共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymes of snake venoms 总被引:6,自引:0,他引:6
Snakes' venom is a mixture of biologically active substances, containing proteins and peptides. A number of these proteins interact with haemostasis system components. Activators and inhibitors affecting blood coagulation and fibrinolysis systems are of special interest. Venom components can be classified into three main groups, such as procoagulants, anticoagulants and fibrinolytic enzymes according to their action. This review is focused on enzymes from Agkistrodon halys halys venom. They are thrombine-like enzyme, named Ancystron-H, flbrinogenolytic enzyme, protein C activator and platelet aggregation inhibitor. Ancystron-H is used for determination of fibrinogen level in blood plasma of patients undergoing heparin treatment and blood coagulation inhibitors accumulation. The fibrinogenolytic enzyme can be used as the instrument for protein-protein interactions in fibrinogen-fibrin system. The protein C activator is used for protein C level determination in blood plasma with different pathologies. Functions of the platelet aggregation inhibitor, belonging to disintegrins group, can be used for development of antithrombotic preparations. Information about the use of snake venoms in science and medicine is presented. 相似文献
2.
C. E. C.-Mendoza
T. Bhatti
A. R. Bhatti 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1992,580(1-2):355-363Electrophoretic analyses were conducted on snake venoms from 21 species representing Elapidae, Crotalidae and Viperidae. Denatured and native venoms were analyzed by polyacrylamide gel electrophoretic (PAGE) methods with sodium dodecyl sulfate (SDS) and without SDS. Both SDS-PAGE and PAGE profiles of venoms from different snake species indicate that some proteins and polypeptide components of these venoms have common electrophoretic characteristics suggesting a genetic relationship. Conversely, the electropherograms also showed the characteristic protein and polypeptide profiles that could differentiate one snake species from another. Therefore, both SDS-PAGE and PAGE profiles suggest that proteins and polypeptides with similar characteristics abound among subspecies or related species, although each venom has a unique profile that differentiates one species from the other. 相似文献
3.
4.
Several hydrolytic enzymes of snake venom have evolved to interfere in various physiological processes, which are well defined. However, hydrolytic enzymes such as nucleotidases (5′nucleotidase, ATPase, and ADPase) are less studied and their pharmacological role in venoms is not clearly defined. Very few studies have shown the pharmacological importance of these endogenous purine release related enzymes in venoms. The near‐ubiquitous distribution of these enzymes in venoms, suggests a significant role for these enzymes in envenomation. It is suggested that their major function is in the generation of purines (mainly adenosine)—a multitoxin. Therefore, it appears that these enzymes play a central role in liberating adenosine and through the action of adenosine help in prey immobilization. However, apart from this, these enzymes could also possess other pharmacological activities. Further research is needed to biologically characterize these enzymes in snake venoms, such that their role in venom is clearly established. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
6.
7.
8.
9.
Birrell GW Earl ST Wallis TP Masci PP de Jersey J Gorman JJ Lavin MF 《Molecular & cellular proteomics : MCP》2007,6(6):973-986
Australian elapid snakes are among the most venomous in the world. Their venoms contain multiple components that target blood hemostasis, neuromuscular signaling, and the cardiovascular system. We describe here a comprehensive approach to separation and identification of the venom proteins from 18 of these snake species, representing nine genera. The venom protein components were separated by two-dimensional PAGE and identified using mass spectrometry and de novo peptide sequencing. The venoms are complex mixtures showing up to 200 protein spots varying in size from <7 to over 150 kDa and in pI from 3 to >10. These include many proteins identified previously in Australian snake venoms, homologs identified in other snake species, and some novel proteins. In many cases multiple trains of spots were typically observed in the higher molecular mass range (>20 kDa) (indicative of post-translational modification). Venom proteins and their post-translational modifications were characterized using specific antibodies, phosphoprotein- and glycoprotein-specific stains, enzymatic digestion, lectin binding, and antivenom reactivity. In the lower molecular weight range, several proteins were identified, but the predominant species were phospholipase A2 and alpha-neurotoxins, both represented by different sequence variants. The higher molecular weight range contained proteases, nucleotidases, oxidases, and homologs of mammalian coagulation factors. This information together with the identification of several novel proteins (metalloproteinases, vespryns, phospholipase A2 inhibitors, protein-disulfide isomerase, 5'-nucleotidases, cysteine-rich secreted proteins, C-type lectins, and acetylcholinesterases) aids in understanding the lethal mechanisms of elapid snake venoms and represents a valuable resource for future development of novel human therapeutics. 相似文献
10.
11.
12.
13.
14.
15.
The antibacterial activity of honeybee venom (Apis mellifera), three snake venoms (Naja naja sputatrix, Vipera russellii and Crotalus adamanteus) and the polypeptide melittin was investigated against Escherichia coli. Minimum inhibitory concentration values, cell lysis and alterations in cell permeability were determined and action against E. coli was in the order: A. mellifera venom greater than melittin greater than N. naja sputatrix venom much greater than V. russellii venom greater than C. adamanteus venom. Cellular damage by A. mellifera and N. naja sputatrix venoms was evident in electron micrographs. 相似文献
16.
17.
18.
The action of various venoms on Escherichia coli 总被引:1,自引:0,他引:1
The antibacterial activity of honeybee venom ( Apis mellifera ), three snake venoms ( Naja naja sputatrix, Vipera russellii and Crotalus adamanteus ) and the polypeptide melittin was investigated against Escherichia coli . Minimum inhibitory concentration values, cell lysis and alterations in cell permeability were determined and action against E. coli was in the order: A. mellifera venom > melittin > N. naja sputatrix venom ≫ V. russellii venom > C. adamanteus venom. Cellular damage by A. mellifera and N. naja sputatrix venoms was evident in electron micrographs. 相似文献
19.