首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phylogenomic analyses have revealed several important metazoan clades, such as the Ecdysozoa and the Lophotrochozoa. However, the phylogenetic positions of a few taxa, such as ctenophores, chaetognaths, acoelomorphs, and Xenoturbella, remain contentious. Thus, the findings of qualitative markers or "rare genomic changes" seem ideal to independently test previous phylogenetic hypotheses. We here describe a rare genomic change, the presence of the gene UDP-GlcNAc 2-epimerase/N-acetylmannosamine kinase (GNE). We show that GNE is encoded in the genomes of deuterostomes, acoelomorphs and Xenoturbella, whereas it is absent in protostomes and nonbilaterians. Moreover, the GNE has a complex evolutionary origin involving unique lateral gene transfer events and/or extensive hidden paralogy for each protein domain. However, rather than using GNE as a phylogenetic character, we argue that rare genomic changes such as the one presented here should be used with caution.  相似文献   

2.
Integrin alphaIIb is a cell adhesion molecule expressed in association with beta3 by cells of the megakaryocytic lineage, from committed progenitors to platelets. While it is clear that lymphohemopoietic cells differentiating along other lineages do not express this molecule, it has been questioned whether mammalian hemopoietic stem cells (HSC) and various progenitor cells express it. In this study, we detected alphaIIb expression in midgestation embryo in sites of HSC generation, such as the yolk sac blood islands and the hemopoietic clusters lining the walls of the major arteries, and in sites of HSC migration, such as the fetal liver. Since c-Kit, which plays an essential role in the early stages of hemopoiesis, is expressed by HSC, we studied the expression of the alphaIIb antigen in the c-Kit-positive population from fetal liver and adult bone marrow differentiating in vitro and in vivo into erythromyeloid and lymphocyte lineages. Erythroid and myeloid progenitor activities were found in vitro in the c-Kit(+)alphaIIb(+) cell populations from both origins. On the other hand, a T cell developmental potential has never been considered for c-Kit(+)alphaIIb(+) progenitors, except in the avian model. Using organ cultures of embryonic thymus followed by grafting into athymic nude recipients, we demonstrate herein that populations from murine fetal liver and adult bone marrow contain T lymphocyte progenitors. Migration and maturation of T cells occurred, as shown by the development of both CD4(+)CD8- and CD4-CD8(+) peripheral T cells. Multilineage differentiation, including the B lymphoid lineage, of c-Kit(+)alphaIIb(+) progenitor cells was also shown in vivo in an assay using lethally irradiated congenic recipients. Taken together, these data demonstrate that murine c-Kit(+)alphaIIb(+) progenitor cells have several lineage potentialities since erythroid, myeloid, and lymphoid lineages can be generated.  相似文献   

3.
The phylogeny of the Bilateria and especially the early steps in the evolution of the bilaterian bauplan are still a controversial topic. In this context the relationships of the platyhelminths and the nematodes play a crucial role. Previous molecular studies of the relationships of these groups, which were based on 18S ribosomal DNA sequences, yielded conflicting results. In the present study a new framework is developed for the phylogenetic analysis of bilaterian relationships, using concatenated amino acid sequences of several nuclear genes. In this analysis, the rhabditophoran platyhelminths are probably the sister group of all other analyzed Bilateria, the Eubilateria, which are characterized by a one-way intestine with an anus. The Eubilateria are split into the nematode lineage and the coelomates. The phylogenetic results of the present study indicate that genetic features found in the model organisms Caenorhabditis and Drosophila might be found in all Eubilateria. Estimations of the divergence times show that the major bilaterian phyla did not originate in an explosive radiation during the Cambrian but rather that the Bilateria have a several hundred million years long Precambrian history.  相似文献   

4.
5.
One major difference between simple metazoans such as cnidarians and all the bilaterian animals is thought to involve the invention of mesoderm. The terms diploblasts and triploblasts are therefore, often used to group prebilaterian and bilaterian animals, respectively. However, jellyfish contain well developed striated and smooth muscle tissues that derive from the entocodon, a mesoderm-like tissue formed during medusa development. We investigated the hypothesis, that the entocodon could be homologous to the third germ layer of bilaterians by analyzing the structures and expression patterns of the homologues of Brachyury, Mef2, and Snail in the jellyfish Podocoryne carnea. These are regulatory genes from the T-box, MADS-box and zinc finger families known to play important roles in bilaterian mesoderm patterning and muscle differentiation. The sequence and expression data demonstrate that the genes are structurally and functionally conserved and even more similar to humans or other deuterostomes than to protostome model organisms such as Drosophila or Caenorhabditis elegans. Based on these data we conclude that the common ancestor of the cnidarians and bilaterians not only shared genes that play a role in regulating myogenesis but already used them to develop and differentiate muscle systems similar to those of triploblasts.  相似文献   

6.
To elucidate the evolutionary origin of nervous system centralization, we investigated the molecular architecture of the trunk nervous system in the annelid Platynereis dumerilii. Annelids belong to Bilateria, an evolutionary lineage of bilateral animals that also includes vertebrates and insects. Comparing nervous system development in annelids to that of other bilaterians could provide valuable information about the common ancestor of all Bilateria. We find that the Platynereis neuroectoderm is subdivided into longitudinal progenitor domains by partially overlapping expression regions of nk and pax genes. These domains match corresponding domains in the vertebrate neural tube and give rise to conserved neural cell types. As in vertebrates, neural patterning genes are sensitive to Bmp signaling. Our data indicate that this mediolateral architecture was present in the last common bilaterian ancestor and thus support a common origin of nervous system centralization in Bilateria.  相似文献   

7.
Developmental origin of smooth muscle cells in the descending aorta in mice   总被引:1,自引:0,他引:1  
Aortic smooth muscle cells (SMCs) have been proposed to derive from lateral plate mesoderm. It has further been suggested that induction of SMC differentiation is confined to the ventral side of the aorta, and that SMCs later migrate to the dorsal side. In this study, we investigate the origin of SMCs in the descending aorta using recombination-based lineage tracing in mice. Hoxb6-cre transgenic mice were crossed with Rosa 26 reporter mice to track cells of lateral plate mesoderm origin. The contribution of lateral plate mesoderm to SMCs in the descending aorta was determined at different stages of development. SMC differentiation was induced in lateral plate mesoderm-derived cells on the ventral side of the aorta at embryonic day (E) 9.0-9.5, as indicated by expression of the SMC-specific reporter gene SM22alpha-lacZ. There was, however, no migration of SMCs from the ventral to the dorsal side of the vessel. Moreover, the lateral plate mesoderm-derived cells in the ventral wall of the aorta were replaced by somite-derived cells at E10.5, as indicated by reporter gene expression in Meox1-cre/Rosa 26 double transgenic mice. Examination of reporter gene expression in adult aortas from Hoxb6-cre/Rosa 26 and Meox1-cre/Rosa 26 double transgenic mice suggested that all SMCs in the adult descending aorta derive from the somites, whereas no contribution was recorded from lateral plate mesoderm.  相似文献   

8.
9.
We previously demonstrated that progenitors of both endothelium and smooth muscle cells in the aortic wall originated from the somite in the trunk of the embryo. However whether the contribution to vascular Smooth Muscle Cells (vSMC) is restricted to the aorta or encompasses other vessels of the trunk is not known. Moreover, the somitic compartment that gives rise to vSMC is yet to be defined. Quail-chick orthotopic transplantations of either the segmental plate or the dorsal or ventral halves from single somites demonstrate that 1° vSMC of the body wall including those of the limbs originate from the somite. 2° Like vSMC, aortic pericytes originate from the somite. 3° The sclerotome is the somite compartment that gives rise to vSMC and pericytes. PAX1 and FOXC2, two molecular markers of the sclerotomal compartment, are expressed by vSMC and pericytes during the earliest phases of vascular wall formation. Later on, PDGFR-β and MYOCARDIN are also expressed by these cells. In contrast, the dermomyotome gives rise to endothelium but never to cells in the vascular wall. Taken together, out data point out to the critical role of the somite in vessel formation and demonstrate that vSMC and endothelial cells originate from two independent somitic compartments.  相似文献   

10.
Mature adhesions in a motile fibroblast can be classified as stationary "towing" adhesions in the front and sliding trailing adhesions that resist the traction force. Adhesions formed at the front of motile fibroblasts rarely reach the trailing zone, due to disassembly promoted by intensive microtubule targeting. Here, we show that the majority of adhesions found at the trailing edge originate within small short-lived protrusions that extend laterally and backwards from the cell edge. These adhesions enlarge by sliding and by fusion with neighboring adhesions. A further subset of trailing adhesions is initiated at a novel site proximal to trailing stress fibre termini. Following tail retraction, trailing adhesions are actively regenerated and the stress fibre system is remodeled accordingly; the tensile forces elaborated by the contractile actin system are consequently redirected according to trailing adhesion location. We conclude that persistent and dynamic anchorage of the cell rear is needed for the maintenance of continuous unidirectional movement of fibroblasts.  相似文献   

11.
12.
13.
14.
The origin of both mesoderm and muscle are central questions in metazoan evolution. The majority of metazoan phyla are triploblasts, possessing three discrete germ layers. Attention has therefore been focused on two outgroups to triploblasts, Cnidaria and Ctenophora. Modern texts describe these taxa as diploblasts, lacking a mesodermal germ layer. However, some members of Medusozoa, one of two subphyla within Cnidaria, possess tissue independent of either the ectoderm or endoderm referred to as the entocodon. Furthermore, members of both Cnidaria and Ctenophora have been described as possessing striated muscle, a mesodermal derivative. While it is widely accepted that the ancestor of Eumetazoa was diploblastic, homology of the entocodon and mesoderm as well as striated muscle within Eumetazoa has been suggested. This implies a potential triploblastic ancestor of Eumetazoa possessing striated muscle. In the following review, I examine the evidence for homology of both muscle and mesoderm. Current data support a diploblastic ancestor of cnidarians, ctenophores, and triploblasts lacking striated muscle.  相似文献   

15.
During embryogenesis, paraxial mesoderm cells contribute skeletal muscle progenitors, whereas cardiac progenitors originate in the lateral splanchnic mesoderm (SpM). Here we focus on a subset of the SpM that contributes to the anterior or secondary heart field (AHF/SHF), and lies adjacent to the cranial paraxial mesoderm (CPM), the precursors for the head musculature. Molecular analyses in chick embryos delineated the boundaries between the CPM, undifferentiated SpM progenitors of the AHF/SHF, and differentiating cardiac cells. We then revealed the regionalization of branchial arch mesoderm: CPM cells contribute to the proximal region of the myogenic core, which gives rise to the mandibular adductor muscle. SpM cells contribute to the myogenic cells in the distal region of the branchial arch that later form the intermandibular muscle. Gene expression analyses of these branchiomeric muscles in chick uncovered a distinct molecular signature for both CPM- and SpM-derived muscles. Islet1 (Isl1) is expressed in the SpM/AHF and branchial arch in both chick and mouse embryos. Lineage studies using Isl1-Cre mice revealed the significant contribution of Isl1(+) cells to ventral/distal branchiomeric (stylohyoid, mylohyoid and digastric) and laryngeal muscles. By contrast, the Isl1 lineage contributes to mastication muscles (masseter, pterygoid and temporalis) to a lesser extent, with virtually no contribution to intrinsic and extrinsic tongue muscles or extraocular muscles. In addition, in vivo activation of the Wnt/beta-catenin pathway in chick embryos resulted in marked inhibition of Isl1, whereas inhibition of this pathway increased Isl1 expression. Our findings demonstrate, for the first time, the contribution of Isl1(+) SpM cells to a subset of branchiomeric skeletal muscles.  相似文献   

16.
Orthotopic grafts of wheat germ agglutinin-colloidal gold conjugate (WGA-gold) labelled cells were used to demonstrate differences in the segmental fate of cells in the presomitic mesoderm of the early-somite-stage mouse embryos developing in vitro. Labelled cells in the anterior region of the presomitic mesoderm colonized the first three somites formed after grafting, while those grafted to the middle region of this tissue were found mostly in the 4th-7th newly formed somites. Labelled cells grafted to the posterior region were incorporated into somites whose somitomeres were not yet present in the presomitic mesoderm at the time of grafting. There was therefore an apparent posterior displacement of the grafted cells in the presomitic mesoderm. Colonization of somites by WGA-gold labelled cells was usually limited to two to three consecutive somites in the chimaera. The distribution of cells derived from a single graft to two somites was most likely due to the segregation of the labelled population when cells were allocated to adjacent meristic units during somite formation. Further spreading of the labelled cells to several somites in some cases was probably the result of a more extensive mixing of mesodermal cells among the somitomeres prior to somite segmentation.  相似文献   

17.
The origin of alanine produced in skeletal muscle   总被引:17,自引:0,他引:17  
  相似文献   

18.
Summary The origin of skeletal muscle cells in avian iris muscle was investigated by quantitative analysis of heterochromatin profiles at the electron-microscopic level in irides of six types of quail-duck chimeras. Each of the following tissues was transplanted into the head region from quail to duck between stages 9 and 10: cranial neural crest; trunk neural crest; midbrain and adjacent mesoderm; forebrain; forebrain without neural crest; and forebrain without neural crest and mesoderm. The average ratio of heterochromatin profile to nucleus profile in iris skeletal muscle cells was high (quail type) in the dorsal iris, but low (duck type) in the ventral iris of the chimeras resulting from isotopic transplantation of cranial neural crest. Heterotopic transplantation of trunk neural crest to cranial position resulted in failure of development of skeletal muscle cells in the dorsal iris, but not in the appearance of skeletal muscle cells in the ventral iris. The average ratio of heterochromatin profile to nucleus profile in iris skeletal muscle cells was high in the chimeras resulting from transplantation of midbrain region and the chimeras resulting from transplantation of forebrain region, intermediate in the chimeras resulting from transplantation of forebrain region without neural crest, and low in the chimeras resulting from transplantation of forebrain region without neural crest and mesoderm. These results indicate that the skeletal muscle cells in the dorsal iris are of cranial neural crest origin while those in the ventral iris are not, and could possibly arise from cranial mesoderm.  相似文献   

19.
Summary The cell-substratum adhesive characteristics of cultured chick embryo primary mesoderm cells have been examined by inteference reflection microscopy and transmission electron microscoy under various conditions. Correlations were drawn between the type of adhesion and the degree of motility shown by the cells. During the rapid spreading and motility of cells cultured on fibronectin-containing substrate, focal contacts (10 to 15-nm gap) were rare and close contacts (about 30-nm gap) were pedominant. By contrast, when the cells were immobile, after 5 d in cultue, extensive focal contacts were present, together with stress fibers. The results indicate that tight cell-substratum contact is incompatible with rapid cell motility and that fibronectin acts by inducing the formation of close contacts rather than focal contacts. This work was supported by grants from the Medical Research Council of Canada and the Alberta Heritage Foundation for Medical Research.  相似文献   

20.
E J Sanders 《In vitro》1984,20(7):521-527
The cell-substratum adhesive characteristics of cultured chick embryo primary mesoderm cells have been examined by interference reflection microscopy and transmission electron microscopy under various conditions. Correlations were drawn between the type of adhesion and the degree of motility shown by the cells. During the rapid spreading and motility of cells cultured on fibronectin-containing substrata, focal contacts (10 to 15-nm gap) were rare and close contacts (about 30-nm gap) were predominant. By contrast, when the cells were immobile, after 5 d in culture, extensive focal contacts were present, together with stress fibers. The results indicate that tight cell-substratum contact is incompatible with rapid cell motility and that fibronectin acts by inducing the formation of close contacts rather than focal contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号