首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels. In that work, the smallest probe permeable through homomeric Cx26 and heteromeric Cx26–Cx32 channels was the PA-disaccharide, and the smallest probe permeable through homomeric Cx32 channels was the PA-trisaccharide. The larger impermeable probes did not block permeation of the smaller probes. Building on this work, a new set of glucosaccharide probes was developed in which the label was one of a homologous series of novel anthranilic acid derivatives (ABG) that carry negative or positive formal charge or remain neutral at physiological pH. When the PA-label of the smallest impermeant PA-derivatized oligosaccharides was replaced by ABG label, the resulting probes acted as reversible, high-affinity inhibitors of large molecule permeation through connexin pores in a size and connexin-specific manner.  相似文献   

2.
1. Hemichannels formed by connexin26 (Cx26) on the horizontal cell dendrites that invaginate cone terminals in the vertebrate retina have been implicated in the feedback mechanism by which horizontal cells regulate transmitter release from cone photoreceptors. However, their membrane properties had not been studied previously, and it was unclear whether they could subserve their purported function at the membrane potentials over which horizontal cells operate. 2. We used the two-electrode voltage clamp technique to record the membrane currents and pharmacological properties of Cx26 hemichannels formed in the Xenopus oocyte expression system. 3. Oocytes expressing Cx26 exhibited large membrane conductances over a broad range of hyperpolarizing and depolarizing membrane potentials, and displayed little evidence of voltage-dependent gating, indicating that the hemichannels are constitutively open. The Cx26-mediated nonjunctional currents were relatively insensitive to quinine, a cinchona alkaloid that opens hemichannels formed by several other connexins. However, the hemichannel currents were blocked by carbenoxolone, a rise in extracellular calcium, or lowering intracellular pH. The currents could also be suppressed by reducing extracellular pH, and by the chloride channel blocker NPPB through its direct interaction with Cx26 hemichannels. 4. These findings provide a basis with which to evaluate the in situ pharmacological studies that attempt to assess the putative role of Cx26 hemichannels in the feedback pathway in the distal retina.  相似文献   

3.
To facilitate the use of oligosaccharides as analytical tools in biological studies, we have designed, synthesized, and conjugated to maltosaccharides a novel series of homologous small fluorescent moieties that differ in formal charge. These moieties are amide derivatives of anthranilic acid: uncharged N-(2-aminobenzoyl)glycinamide (ABGlyAmide; 2), acidic N,N-dimethyl-N(')-(2-aminobenzoyl)ethylenediamine (ABGlyDIMED; 3), and basic N-(2-aminobenzoyl)glycine (ABGly; 1). Routes for synthesis and optimal reaction conditions for glycoconjugation by conventional reductive amination are presented, as is the compatibility of these adducts with common analytical and preparative chromatographic methods, including RP-HPLC and HPAEC-PAD. These novel anthranilic acid derivatives confer both fluorescence and defined charge to oligosaccharides, and so enhance the repertoire of chromatographic and analytical methods for which anthranilic acid can be used. Furthermore, because glucosaccharides have rigid solution structure, these small fluorescent adducts with different formal charge are ideal tools for molecular sizing studies of membrane pores.  相似文献   

4.
Antidepressants, such as traditional tricyclic antidepressants (TCAs), are the first-line treatment for various pain syndromes. Available evidence indicates that TCAs may target Na+ channels for their analgesic action. In this report, we examined the effects of contemporary antidepressants sertraline and paroxetine on (1) neuronal Na+ channels expressed in GH3 cells and (2) muscle rNav1.4 Na+ channels heterologously expressed in Hek293t cells. Our results showed that both antidepressants blocked Na+ channels in a highly state-dependent manner. The 50% inhibitory concentrations (IC50) for sertraline and paroxetine ranged ∼18–28 μm for resting block and ∼2–8 μm for inactivated block of neuronal and rNav1.4 Na+ channels. Surprisingly, the IC50 values for both drugs were about 0.6–0.7 μm for the open channel block of persistent late Na+ currents generated through inactivation-deficient rNav1.4 mutant Na+ channels. For comparison, the open channel block in neuronal hNav1.7 counterparts yielded IC50 values around 0.3–0.4 μm for both drugs. Receptor mapping using fast inactivation-deficient rNav1.4-F1579A/K mutants with reduced affinities toward local anesthetics (LAs) and TCAs indicated that the F1579 residue is not involved in the binding of sertraline and paroxetine. Thus, sertraline and paroxetine are potent open channel blockers that target persistent late Na+ currents preferentially, but their block is not mediated via the phenylalanine residue at the known LA/TCA receptor site.  相似文献   

5.
6.
Gap-junctional coupling among neurons is subject to regulation by a number of neurotransmitters including nitric oxide. We studied the mechanisms by which NO regulates coupling in cells expressing Cx35, a connexin expressed in neurons throughout the central nervous system. NO donors caused potent uncoupling of HeLa cells stably transfected with Cx35. This effect was mimicked by Bay 21-4272, an activator of guanylyl cyclase. A pharmacological analysis indicated that NO-induced uncoupling involved both PKG-dependent and PKG-independent pathways. PKA was involved in both pathways, suggesting that PKG-dependent uncoupling may be indirect. In vitro, PKG phosphorylated Cx35 at three sites: Ser110, Ser276, and Ser289. A mutational analysis indicated that phosphorylation on Ser110 and Ser276, sites previously shown also to be phosphorylated by PKA, had a significant influence on regulation. Ser289 phosphorylation had very limited effects. We conclude that NO can regulate coupling through Cx35 and that regulation is indirect in HeLa cells.  相似文献   

7.
The mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels. In that work, the smallest probe permeable through homomeric Cx26 and heteromeric Cx26-Cx32 channels was the PA-disaccharide, and the smallest probe permeable through homomeric Cx32 channels was the PA-trisaccharide. The larger impermeable probes did not block permeation of the smaller probes. Building on this work, a new set of glucosaccharide probes was developed in which the label was one of a homologous series of novel anthranilic acid derivatives (ABG) that carry negative or positive formal charge or remain neutral at physiological pH. When the PA-label of the smallest impermeant PA-derivatized oligosaccharides was replaced by ABG label, the resulting probes acted as reversible, high-affinity inhibitors of large molecule permeation through connexin pores in a size and connexin-specific manner.  相似文献   

8.
Connexin31 相互作用蛋白筛选、证实与功能研究   总被引:1,自引:0,他引:1  
筛选间隙连接蛋白 31 (connexin31 , Cx31) 相互作用蛋白并研究其在 Cx31 运输中的功能 . 运用制备的抗 Cx31 多克隆抗体免疫沉淀, SDS- 聚丙烯酰胺凝胶电泳分离,蛋白质条带回收,蛋白质胶块酶解,电喷雾 - 四极杆 - 飞行时间质谱分析,数据库扫描筛选可能相互作用蛋白,可能互作蛋白经免疫共沉淀、细胞免疫共定位等证实,确定 actin 为 Cx31 相互作用蛋白 . 用药物处理细胞,抑制 actin 的功能,观察 Cx31 定位与间隙连接通道的通透性,确定 actin 在 Cx31 运输中的功能 . 当药物抑制 actin 的功能时, Cx31 很少能到达细胞膜上形成间隙连接通道, Cx31 主要分布在胞质中;当药物抑制 tublin 的功能时, Cx31 能到达细胞膜上形成间隙连接通道,细胞免疫荧光实验显示间隙连接斑有增多的现象,但染料转移实验表明细胞膜上间隙连接通道并没有增加 . Actin 在 Cx31 运输至细胞膜上形成间隙连接通道的过程中具有重要作用 .  相似文献   

9.
Two novel Cd(II) coordination polymers, [(CH3)2NH2]2[Cd(cma)2](H2O) (1) and [Cd3(bcma)2(H2O)](H2O) (2) (H2cma = N-(carboxymethyl)-anthranilic acid, H3bcma = N,N′-bis-(carboxymethyl)-anthranilic acid), have been synthesized under hydrothermal conditions and characterized by X-ray single crystal analysis, IR spectra and TGA. Compound 1 possesses 1D double-stranded chain, which further packs into square channels. Compound 2 consists of a novel 3D framework, which not only possesses unique meniscus-like channels but also contains infinite helical chains. Compound 2 is the first example of Cd(II)-aminopolycarboxylate coordination polymers containing three crystallographically independent Cd(II) centres, in which Cd(1), Cd(2), and Cd(3) present distorted pentagonal bipyramidal, tetragonal antiprismatic, and trigonal bipyramidal coordination geometry, respectively. Both compounds display intense room temperature photoluminescence in the solid state.  相似文献   

10.
The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.  相似文献   

11.
Gap junctions composed of connexin (Cx), a large protein family with a number of subtypes, are a main apparatus to maintain cellular homeostasis in many organs. Gap junctional intercellular communication (GJIC) is actively involved in all aspects of the cellular life cycle, ranging from cell growth to cell death. It is also known that the Cx gene acts as a tumor-suppressor due to the maintenance of cellular homeostasis via GJIC. In addition to this function, recent data show that the GJIC-independent function of Cx gene contributes to the tumor-suppressive effect of the gene with specificity to certain cells. With respect to the tumor-suppressive effects, Cx genes acts as tumor-suppressors in primary cancers, but the effects are still conflicting in invasive and metastatic cancers. We have previously reported that Cx32 is specifically downregulated in human renal cell carcinoma (RCC) cell lines as well as cancerous regions when compared to normal regions in kidneys. In recent studies, we have also reported that Cx32 suppresses growth, invasion and metastasis of RCC cells. In this minireview, we refer to a new aspect of Cx32-dependent functions against cell proliferation, invasion and metastasis in RCC cells, especially in a GJIC-independent manner.  相似文献   

12.
Epidermal growth factor (EGF) stimulated the phosphorylation of connexin43 (Cx43) in WB cells as evidenced by the formation of multiple irnmunoreactive Cx43 proteins of higher molecular mass which were abolished by treatment with alkaline phosphatase. Phosphorylation of Cx43 occurred within 10 min of EGF stimulation, was sustained for 1 h, and was associated with almost complete inhibition of gap junctional communication in these cells. EGF-induced phosphorylation and communication inhibition were retained in cells pretreated with phorbol 12-myristate 13-acetate (PMA) to deplete protein kinase C. These results show that the EGF inhibition of communication is tightly linked to protein kinase C-independent phosphorylation of Cx43. Further, Cx43 phosphorylated in the presence of EGF did not react with phosphotyrosine antibodies and in 32Pi incorporation experiments was shown to contain only phosphoserine indicating that the tyrosine kinase activity of the EGF receptor was not directly involved.  相似文献   

13.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with “permissive” connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

14.
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel pore is thought to contain multiple binding sites for permeant and impermeant anions. Here, we investigate the effects of mutation of different positively charged residues in the pore on current inhibition by impermeant Pt(NO2)42− and suramin anions. We show that mutations that remove positive charges (K95, R303) influence interactions with intracellular, but not extracellular, Pt(NO2)42− ions, consistent with these residues being situated within the pore inner vestibule. In contrast, mutation of R334, supposedly located in the outer vestibule of the pore, affects block by both extracellular and intracellular Pt(NO2)42−. Inhibition by extracellular Pt(NO2)42− requires a positive charge at position 334, consistent with a direct electrostatic interaction resulting in either open channel block or surface charge screening. In contrast, inhibition by intracellular Pt(NO2)42− is weakened in all R334-mutant forms of the channel studied, inconsistent with a direct interaction. Furthermore, mutation of R334 had similar effects on block by intracellular suramin, a large organic molecule that is apparently unable to enter deeply into the channel pore. Mutation of R334 altered interactions between intracellular Pt(NO2)42− and extracellular Cl but not those between intracellular Pt(NO2)42− and extracellular Pt(NO2)42−. We propose that while the positive charge of R334 interacts directly with extracellular anions, mutation of this residue also alters interactions with intracellular anions by an indirect mechanism, due to mutation-induced conformational changes in the protein that are propagated some distance from the site of the mutation in the outer mouth of the pore.  相似文献   

15.
Epidermal growth factor (EGF) stimulated the phosphorylation of connexin43 (Cx43) in WB cells as evidenced by the formation of multiple irnmunoreactive Cx43 proteins of higher molecular mass which were abolished by treatment with alkaline phosphatase. Phosphorylation of Cx43 occurred within 10 min of EGF stimulation, was sustained for 1 h, and was associated with almost complete inhibition of gap junctional communication in these cells. EGF-induced phosphorylation and communication inhibition were retained in cells pretreated with phorbol 12-myristate 13-acetate (PMA) to deplete protein kinase C. These results show that the EGF inhibition of communication is tightly linked to protein kinase C-independent phosphorylation of Cx43. Further, Cx43 phosphorylated in the presence of EGF did not react with phosphotyrosine antibodies and in 32Pi incorporation experiments was shown to contain only phosphoserine indicating that the tyrosine kinase activity of the EGF receptor was not directly involved.  相似文献   

16.
In spite of a generally well-conserved outer vestibule and pore structure, there is considerable diversity in the pharmacology of K channels. We have investigated the role of specific outer vestibule charged residues in the pharmacology of K channels using tetraethylammonium (TEA) and a trivalent TEA analog, gallamine. Similar to Shaker K channels, gallamine block of Kv3.1 channels was more sensitive to solution ionic strength than was TEA block, a result consistent with a contribution from an electrostatic potential near the blocking site. In contrast, TEA block of another type of K channel (Kv2.1) was insensitive to solution ionic strength and these channels were resistant to block by gallamine. Neutralizing either of two lysine residues in the outer vestibule of these Kv2.1 channels conferred ionic strength sensitivity to TEA block. Kv2.1 channels with both lysines neutralized were sensitive to block by gallamine, and the ionic strength dependence of this block was greater than that for TEA. These results demonstrate that Kv3.1 (like Shaker) channels contain negatively charged residues in the outer vestibule of the pore that influence quaternary ammonium pharmacology. The presence of specific lysine residues in wild-type Kv2.1 channels produces an outer vestibule with little or no net charge, with important consequences for quaternary ammonium block. Neutralizing these key lysines results in a negatively charged vestibule with pharmacological properties approaching those of other types of K channels.  相似文献   

17.
Rats fasted overnight were allowed to consume single meals containing 0, 18, or 40% protein or continued to fast; after 2 h, brains and sera were taken and assayed for various amino acids. In general, serum levels of most amino acids were reduced by the 0% protein meal and elevated by the high-protein meal when compared with those associated with fasting conditions. Exceptions were those not diminished by the 0% protein meal (tryptophan, methionine, proline) and those increased (alanine) or decreased (glycine) by all of the test meals. Amino acids exhibiting the broadest normal ranges (estimated by comparing their serum levels after 40% protein with those after 0% protein) were tyrosine, leucine, valine, isoleucine, and proline; serum lysine and histidine, two basic amino acids, also varied more than threefold. Brain levels of lysine, histidine, and some of the large neutral amino acids (LNAAs) also exhibited clear relationships to the protein content of the test meal: those of valine, leucine, and isoleucine were depressed by the 0% protein but increased (compared with 0% protein) when protein was added to the meal: brain tyrosine was increased by all of the test meals in proportion to their protein contents; tryptophan, phenylalanine, and glutamate were increased after the 0% protein meal but not by protein-containing meals; brain lysine, histidine, and methionine were increased after the high-protein meal, and brain alanine was increased slightly by all of the meals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The fully open state of heterotypic gap junction channels formed by pairing cells expressing connexin 32 (Cx32) with those expressing connexin 26 (Cx26) rectifies in a way that cannot be predicted from the current-voltage (I-V) relation of either homotypic channel. Using a molecular genetic analysis, we demonstrate that charged amino acids positioned in the amino terminus (M1 and D2) and first extracellular loop (E42) are major determinants of the current-voltage relation of the fully open state of homotypic and heterotypic channels formed by Cx26 and Cx32. The observed I-V relations of wild-type and mutant channels were closely approximated by those obtained with the electrodiffusive model of Chen and Eisenberg (Chen, D., and R. Eisenberg. 1993. Biophys. J. 64:1405-1421), which solves the Poisson-Nernst-Plank equations in one dimension using charge distribution models inferred from the molecular analyses. The rectification of the Cx32/Cx26 heterotypic channel results from the asymmetry in the number and position of charged residues. The model required the incorporation of a partial charge located near the channel surface to approximate the linear I-V relation observed for the Cx32*Cx26E1 homotypic channel. The best candidate amino acid providing this partial charge is the conserved tryptophan residue (W3). Incorporation of the partial charge of residue W3 and the negative charge of the Cx32E41 residue into the charge profile used in the Poisson-Nernst-Plank model of homotypic Cx32 and heterotypic Cx26/Cx32 channels resulted in I-V relations that closely resembled the observed I-V relations of these channels. We further demonstrate that some channel substates rectify. We suggest that the conformational changes associated with transjunctional voltage (V(j))-dependent gating to these substates involves a narrowing of the cytoplasmic entry of the channel that increases the electrostatic effect of charges in the amino terminus. The rectification that is observed in the Cx32/Cx26 heterotypic channel is similar although less steep than that reported for some rectifying electrical synapses. We propose that a similar electrostatic mechanism, which results in rectification through the open and substates of heterotypic channels, is sufficient to explain the properties of steeply rectifying electrical synapses.  相似文献   

19.
pH is a potent modulator of gap junction (GJ) mediated cell-cell communication. Mechanisms proposed for closure of GJ channels by acidification include direct actions of H+ on GJ proteins and indirect actions mediated by soluble intermediates. Here we report on the effects of acidification on connexin (Cx)46 cell-cell channels expressed in Neuro-2a cells and Cx46 hemichannels expressed in Xenopus oocytes. Effects of acidification on hemichannels were examined macroscopically and in excised patches that permitted rapid (<1 ms) and uniform pH changes at the exposed hemichannel face. Both types of Cx46 channel were found to be sensitive to cytoplasmic pH, and two effects were evident. A rapid and reversible closure was reproducibly elicited with short exposures to low pH, and a poorly reversible or irreversible loss occurred with longer exposures. We attribute the former to pH gating and the latter to pH inactivation. Half-maximal reduction of open probability for pH gating in hemichannels occurs at pH 6.4. Hemichannels remained sensitive to cytoplasmic pH when excised and when cytoplasmic [Ca2+] was maintained near resting ( approximately 10(-7) M) levels. Thus, Cx46 hemichannel pH gating does not depend on cytoplasmic intermediates or a rise in [Ca2+]. Rapid application of low pH to the cytoplasmic face of open hemichannels resulted in a minimum latency to closure near zero, indicating that Cx46 hemichannels directly sense pH. Application to closed hemichannels extended their closed time, suggesting that the pH sensor is accessible from the cytoplasmic side of a closed hemichannel. Rapid closure with significantly reduced sensitivity was observed with low pH application to the extracellular face, but could be explained by H+ permeation through the pore to reach an internal site. Closure by pH is voltage dependent and has the same polarity with low pH applied to either side. These data suggest that the pH sensor is located directly on Cx46 near the pore entrance on the cytoplasmic side.  相似文献   

20.
Gap junctions form channels that allow exchange of materials between cells and are composed of transmembrane protein subunits called connexins. While connexins are believed to mediate cellular signaling by permitting intercellular communication to occur, there is also increasing evidence that suggest connexins may mediate growth control via a junction-independent mechanism. Connexin43 (Cx43) is the most abundant gap junction protein found in astrocytes, and gliomas exhibit reduced Cx43 expression. We have previously observed that restoration of Cx43 levels in glioma cells led to increased expression of CCN3 (NOV) proteins. We now report that overexpression of Cx43 in C6-glioma cells (C6-Cx43) also upregulates the expression of CCN1 (Cyr61). Both CCN1 and CCN3 belong to the Cyr61/Connective tissue growth factor/Nephroblastoma-overexpressed (CCN) family of secretory proteins. The CCN proteins are tightly associated with the extracellular matrix and have important roles in cell proliferation and migration. CCN1 promotes growth in glioma cells, as shown by the increased proliferation rate of CCN1-overexpressing C6 cells. In addition to its effect on cell growth, CCN1 also increased the motility of glioma cells in the presence of extracellular substrates such as fibronectin. Gliomas expressing high levels of Cx43 preferentially upregulated CCN3 which resulted in reduced growth rate. CCN3 could also be observed in Cx43 gap junction plaques in confluent C6-Cx43H culture at the stationary phase of their growth. Our results suggest that the dissimilar growth characteristics between high and low Cx43 expressors may be due to differential regulation of CCN3 by varying levels of Cx43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号