首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbamyl-P: glucose phosphotransferase, mannose-6-P: glucose phosphotransferase, and mannose-6-P and glucose-6-P phosphohydrolase activities of D-glucose-6-P phosphohydrolase (EC 3.1.3.9) have been demonstrated in avian and mammalian liver (and kidney) nuclear membrane. In marked contrast with activities of this enzyme of fragmented endoplasmic reticulum (“microsomes”), those of the intact membrane of isolated nuclei are totally, or nearly-totally, manifest without the need for preliminary activation by detergents or similar treatments. Disruption of nuclei and isolation of nuclear membranes results in the acquisition of detergent-sensitivity of such activities. Physiological implications of these observations are discussed.  相似文献   

2.
R C Nordlie 《Life sciences》1979,24(26):2397-2404
Glucose-6-phosphatase is a multifunctional enzyme, displaying potent ability to synthesize as well as hydrolyze Glc-6-P. These multifunctional characteristics have been exploited in studies of the extended distribution of the enzyme, and their physiological significance has been examined. The enzyme is considerably more widely distributed than previously suspected. It has been found in pancreas, adrenals, lung, testes, spleen, and brain as well as in liver, kidney, and mucosa of small intestine. Approximately 15–20% of total hepatic glucose-6-phosphatase-phosphotransferase is present in nuclear membrane, 75–80% is found in endoplasmic reticulum, and small amounts have been detected also in plasma membrane and repeatedly-washed mitochondria. Both hydrolytic and synthetic functions, in constant proportions, have been found in livers of 21 species of birds, amphibia, reptiles, crustacea, fishes, and mammals (including man) studied. With 5 mM phosphoryl donor and 100 mM D-glucose as substrates, carbamyl-P:glucose phosphotransferase activity of glucose-6-phosphatase exceeded that of glucokinase by 5–50 fold. While latencies of activities of isolated microsomal preparations are extensive, those of nuclear membranes are not. Latencies of activities of intact endoplasmic reticulum of permeable hepatocytes are 28% for Glc-6-P phosphohydrolase and 56% for carbamyl-P:glucose phosphotransferase. Studies with isolated perfused livers from fasted rats suggest rather convincingly that such phosphotransferase activities may function as an hepatic glucose-phosphorylating system supplemental to glucokinase and hexokinase. This conclusion is based both on comparisons of rates of glucose uptake with hepatic enzyme levels (glucokinase, hexokinase, phosphotransferase), and on observed inhibitibility of glucose uptake by ornithine and 3-0-methyl-D-glucose. The question of availability of adequate concentrations of suitable phosphoryl donor(s) in cytosol of the liver cell constitutes a principal focus for continuing studies regarding physiological functions of this enzyme.  相似文献   

3.
(1). The capacity for the synthesis of glucose 6-phosphate from PPi and glucose as well as for glucose-6-P hydrolysis, catalyzed by rat liver microsomal glucose-6-phosphatase, increases rapidly from low prenatal levels to a maximum between the second and fifth day, then slowly decreases to reach adult levels. When measured in enzyme preparations optimally activated by hydroxyl ions, the maximum neonatal activities were 4--5-fold higher than in adult animals and several-fold higher than had previously been observed for the unactivated enzyme. (2) The latencies of two catalytic activities associated with the same membrane-bound enzyme show strikingly different age-related changes. The latency of PPi-glucose phosphotransferase activity reaches high levels (60--80% latent) soon after birth and remains high throughout life, while the latency of glucose-6-P phosphohydrolase decreases with age. The phosphohydrolase is 2--3 times more latent in the liver of the neonatal animal than in the adult. (3). The well established neonatal overshoot of liver glucose-6-phosphatase is almost entirely due to changes in the enzyme in the rough microsomal membranes. The enzyme activity in the rough membrane reaches a maximum and then decreases after day 2, while that in the smooth membrane is still slowly increasing. Despite the great differences in absolute specific activities and in the pattern of early enzyme development between the rough and smooth microsomes, enzyme latency in the two subfractions remains parallel, glucose-6-P phosphohydrolase being only slightly more latent, while PPi-glucose phospho-transferase is much more latent in smooth than in rough membranes throughout life. (4). Kidney glucose-6-P phosphohydrolase and PPi-glucose phosphotransferase activities were found to change in a parallel fashion with age, showing a small neonatal peak between days 2 and 7 before rising to adult levels. Kidney phosphotransferase activity, like that of liver, remained highly latent throughout life. In contrast to liver, the glucose-6-P phosphohydrolase of kidney did not show a characteristic decrease in latency with age and in the adult remained appreciably more latent than in liver. (5). An improved method was devised for the separation of smooth microsomes from liver homogenates.  相似文献   

4.
The effects of added polyamines on carbamylphosphate (carbamyl-P):glucose phosphotransferase and glucose-6-phosphate (Glc-6-P) phosphohydrolase activities of rat hepatic D-Glc-6-P phosphohydrolase (EC 3.1.3.9) of intact and detergent-treated microsomes have been investigated. With the former preparation, in the presence of 1.4 mM phosphate substrate and 90 mM D-glucose (phosphotransferase), 1 mM spermine, spermidine, and putrescine activated Glc-6-P phosphohydrolase 67%, 57%, and 35%, respectively. Carbamyl-P:glucose phosphotransferase, under comparable conditions, was activated 57%, 34%, and 18%. NH+4 (0.25--5.0 mM) produced at best but a minor activation (0--14%), while poly(L-lysine) (Mr = 3400; degree of polymerization 16) equimolar relative to other polyamines with respect to ionized free amino groups activated the hydrolase 358% and the transferase 222%. Treatment of microsomes with the detergent deoxycholate reduced, but did not abolish, polyamine-induced activation. The stimulatory effects of polyamines persisted in the presence of excess catalase, indicating their independence from H2O2 formation; and were eliminated in the presence of Ca2+. Kinetic analysis revealed that all tested polyamines decreased the apparent Michaelis constant values for carbamyl-P and Glc-6-P, but had no effect on the Km for glucose. Poly(L-lysine) increased the V value for both Glc-6-P phosphohydrolase and apparent V values for phosphotransferase extrapolated to infinite concentrations of either carbamyl-P or glucose. The other tested polyamines elevated only this last velocity parameter. It is proposed that a major mechanism by which polyamines activate glucose-6-phosphatase-phosphotransferase is through their electrostatic interactions with phospholipids of the membrane of the endoplasmic reticulum of which this enzyme is a part. Conformational alterations thus induced may in turn affect catalytic behavior. It is suggested that polyamines, or similar positively charged peptides, might participate in the cellular regulation of synthetic and hydrolytic activities of glucose-6-phosphatase.  相似文献   

5.
6.
Radiation inactivation analysis was utilized to estimate the sizes of the units catalyzing the various activities of hepatic microsomal glucose-6-phosphatase. This technique revealed that the target molecular weights for mannose-6-P phosphohydrolase, glucose-6-P phosphohydrolase, and carbamyl-P:glucose phosphotransferase activities were all about Mr 75,000. These results are consistent with the widely held view that all of these activities are catalyzed by the same protein or proteins. Certain observations indicate that the molecular organization of microsomal glucose-6-phosphatase is better described by the conformational hypothesis which envisions the enzyme as a single covalent structure rather than by the substrate transport model which requires the participation of several physically separate polypeptides. These include the findings: 1) that the target sizes for glucose-6-P phosphohydrolase and carbamyl-P:glucose phosphotransferase activities were not larger than that for mannose-6-P phosphohydrolase in intact microsomes and 2) that the target size for glucose-6-P phosphohydrolase in disrupted microsomes was not less than that observed in intact microsomes. These findings are most consistent with a model for glucose-6-phosphatase of a single polypeptide or a disulfide-linked dimer which spans the endoplasmic reticulum with the various activities of this multifunctional enzyme residing in distinct protein domains.  相似文献   

7.
Copper deficiency has been reported to cause glucose intolerance in rats by interfering with normal glucose utilization. Accordingly, copper deficiency was produced in rats to study its effects on glucose-6-P phosphohydrolase and carbamyl-P: glucose phosphotransferase activities of hepatic glucose-6-phosphatase (EC 3.1.3.9), a major enzyme involved in maintaining glucose homeostasis. When measured in homogenates treated with deoxycholate, total glucose-6-P phosphohydrolase was 23% lower and total carbamyl-P:glucose phosphotransferase was 17% lower in copper-deficient rats compared to controls. Latency, or that portion of total activity that is not manifest unless the intact membranous components are disrupted with deoxycholate also was lower in copper-deficient rats. Glucose-6-P phosphohydrolase was 5% latent in copper-deficient rats compared to 24% in controls and carbamyl-P : glucose phosphotransferase was 55% latent in copper-deficient rats compared to 65% in controls. The decrease in latency appears to compensate for the lower total enzyme activities in such a manner as to allow the net expression of these activities in the intact membranous components of the homogenate to remain unaltered by copper deficiency. It thus appears unlikely that copper deficiency affects glucose homeostasis in vivo by altering the net rate of glucose-6-P hydrolysis or synthesis by glucose-6-phosphatase. These observations are interpreted on the basis of a multicomponent glucose-6-phosphatase system in which the total enzyme activity expressed in intact membranous preparation is limited by substrate specific translocases that transport substrate to the membrane-bound catalytic unit. A decrease in latency can then be interpreted as a functional increase in translocase activity and may constitute a compensating mechanism for maintaining constant glucose homeostasis when glucose-6-phosphatase catalytic activity is depressed as it is in copper deficiency.  相似文献   

8.
L P Ermolaeva 《Ontogenez》1983,14(5):503-509
Glucose-6-phosphatase was shown to be polyfunctional in the liver of the developing chick embryo. Changes in the activity of glucose-6-phosphate phosphohydrolase did not correlate with the rate of gluconeogenesis. The activity of this enzyme increased from the 16th to the 20th day of embryogenesis. The activities of pyrophosphate-glucose phosphotransferase, carbamyl-phosphate-glucose phosphotransferase did not change during embryogenesis. The ratio of the activities of phosphohydrolase and phosphotransferases was characterized by the predominance of the phosphohydrolase activity. The values of latency of phosphohydrolase and phosphotransferases did not correlate with the rate of gluconeogenesis. Glucose-6-phosphate phosphohydrolase was found not only in the microsomal, but in the nuclear fraction as well. KM(G6P) of the enzyme of the nuclear fraction differed from KM of the microsomal enzyme.  相似文献   

9.
Carbamyl-P:glucose and PPi:glucose phosphotransferase, but not inorganic pyrophosphatase, activities of the hepatic microsomal glucose-6-phosphatase system demonstrate a time-dependent lag in product production with 1 mM phosphate substrate. Glucose-6-P phosphohydrolase shows a similar behavior with [glucose-6-P] less than or equal to 0.10 mM, but inorganic pyrophosphatase activity does not even at the 0.05 or 0.02 mM level. The hysteretic behavior is abolished when the structural integrity of the microsomes is destroyed by detergent treatment. Calculations indicate that an intramicrosomal glucose-6-P concentration of between 20 and 40 microM must be achieved, whether in response to exogenously added glucose-6-P or via intramicrosomal synthesis by carbamyl-P:glucose or PPi:glucose phosphotransferase activity, before the maximally active form of the enzyme system is achieved. It is suggested that translocase T1, the transport component of the glucose-6-phosphatase system specific for glucose-6-P, is the target for activation by these critical intramicrosomal concentrations of glucose-6-P.  相似文献   

10.
Comparative studies investigating influences of temperature and time of preincubation on the interactions of an organomercurial agarose gel and p-mercuribenzoate with glucose-6-phosphatase of native and Triton X-114-modified rat liver microsomes were carried out. The effect of p-mercuribenzoate on glucose 6-phosphate hydrolysis is a result of two processes, a moderate membrane perturbation connected with release of some latency and temperature- and time-dependent inhibition of the catalytic activity. Short-term preincubation with both organic mercurials at 37 degrees C is a necessary condition for the entire inhibition of the enzyme activity of native as well as of Triton X-114-modified microsomes. A binding site of the phosphohydrolase itself is accessible to p-mercuribenzoate and the phenyl mercury residue of the affinity gel from the cytoplasmic surface even in native microsomes. Kinetic analyses reveal a formally competitive mechanism of inhibition using native microsomes, but the kinetic picture changes to a noncompetitive pattern of Lineweaver-Burk plots when the inhibitor-loaded microsomes are modified optimally by Triton X-114. This behavior can be evaluated as the first convincing evidence for drastic changes of the conformational status of the phosphohydrolase during the membrane modification process. A combined conformational flexibility-substrate transport model characterizing the microsomal glucose-6-phosphatase as an integral channel-protein embedded within the hydrophobic interior of the membrane is proposed.  相似文献   

11.
Vanadate: a potent inhibitor of multifunctional glucose-6-phosphatase   总被引:3,自引:0,他引:3  
Vanadate has been found to be a potent inhibitor of both the hydrolytic and synthetic activities of the multifunctional enzyme glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase, EC 3.1.3.9). The enzyme, when studied in both microsomal preparations and in situ using permeable isolated hepatocytes, is inhibited by micromolar concentrations of vanadate. The inhibition by vanadate is greater in detergent-treated than in untreated microsomes. In both the microsomal preparations and permeable hepatocytes, the inhibition by vanadate is competitive with the phosphate substrate and is greater for the phosphotransferase than the hydrolase activity of the enzyme. The Ki values of vanadate for carbamyl-phosphate : glucose phosphotransferase and glucose-6-phosphate phosphohydrolase determined with permeable hepatocytes are in good agreement with the values determined with detergent-dispersed microsomes. The previously described inhibition of glucose-6-phosphate phosphohydrolase by ATP (Nordlie, R.C., Hanson, T.L., Johns, P.T. and Lygre, D.G. (1968) Proc. Natl. Acad. Sci. USA 60, 590-597) can now be explained by the vanadium contamination of the commercially available ATP samples used. In contrast with glucose-6-phosphatase, hepatic glucokinase and hexokinase were not inhibited by vanadate. Physiological implications and utilitarian experimental applicability of vanadate as a selective metabolic probe, based on these observations, are suggested.  相似文献   

12.
Modification of microsomal membranes in vivo and in vitro results in changes of the glucose-6-phosphate and inorganic pyrophosphate phosphohydrolase activities of liver microsomal glucose-6-phosphate phosphohydrolase (EC 3.1.3.9). It was demonstrated that the glucose-6-phosphate phosphohydrolase activity of glucose-6-phosphatase depends on the content of phosphatidylethanolamine in the microsomal membranes, whereas the inorganic pyrophosphate phosphohydrolase activity seems to be dependent on the phosphatidylserine content. It is assumed that the regulation of the corresponding enzyme activities by these phospholipids is performed by the same allosteric mechanism in vitro and in vivo.  相似文献   

13.
Studies of the thermal stability of rat liver glucose-6-phosphatase (EC 3.1.3.9) were carried out to further elevate the proposal that the enzymic activity is the result of the coupling of a glucose-6-P-specific translocase and a nonspecific phosphohydrolase-phosphotransferase. Inactivation was observed when micorsomes were incubated at mild temperatures between pH 6.2 and 5.6. The rate of inactivation increased either with increasing hydrogen ion concentration or temperature. However, no inactivation was seen below 15 degrees in media as low as pH 5 or at neutral pH up to 37 degrees. The thermal stability of the enzyme may be controlled by the physical state of the membrane lipids and the degree of protonation of specific residues in the enzyme protein. Microsomes were exposed to inactivating conditions, and kinetic analyses were made of the glucose-6-P phosphohydrolase activities before and after supplementation to 0.4% sodium taurocholate. The results support the postulate and the kinetic characteristics of a given preparation of intact microsomes are determined by the relative capacities of the transport and catalytic components. Before detergent treatment, inactivation (i.e. a decrease in Vmax) was accompanied by a decrease in Km and a reduction in the fraction of latent activity, whereas only Vmax was depressed in disrupted preparations. The possibility that the inactivating treatments caused concurrent disruption of the microsomal membrane was ruled out. It is concluded that exposures to mild heat in acidic media selectively inactivate the catalytic component of the glucose-6-phosphatase system while preserving an intact permeability barrier and a functional glucose-6-P transport system. Analyses of kinetic data obtained in the present and earlier studies revealed several fundamental mathematical relationships among the kinetic constants describing the glucose-6-P phosphohydrolase activities of intact (i.e. the "system") and disrupted microsomes (i.e. the catalytic component). The quantitative relationships appear to provide a means to calculate a velocity constant (VT) and a half-saturation constant (KT) for glucose-6-P influx. The well documented, differential responses of the rat liver glucose-6-phosphatase system induced by starvation, experimental diabetes, or cortisol administration were analyzed in terms of these relationships. The possible influences of cisternal inorganic phosphate on the apparent kinetic constants of the intact system are discussed.  相似文献   

14.
The factors regulating glucose-6-phosphatase (EC 3.1.3.9) activity and substrate specificity in hepatic microsomes were studied by determining the rate-limiting reaction for the hydrolysis of glucose-6-P, and by examining the effect of detergent activation on phosphotransferase activity. Examination of the pre-steady state kinetics of glucose-6-phosphatase revealed that the steady state rate is determined by the rate of hydrolysis of the enzyme-P intermediate. Treatment of the enzyme with detergent does not alter the extent of the rapid release of glucose per mg of protein, but activates the steady state rate of catalytic turnover. Specificity of the enzyme was evaluated by comparing the effects of mannose and glucose as phosphate acceptors in the phosphotransferase reaction catalyzed by glucose-6-phosphatase. Untreated glucose-6-phosphatase discriminates against mannose as compared with glucose in that mannose and glucose bind to the enzyme-P intermediate of untreated enzyme, but mannose is not an acceptor of Pi. Mannose is an acceptor, however, after treatment of microsomes with detergent. These data cannot be explained in terms of the currently accepted "compartmentation" model for the regulation of glucose-6-phosphatase. The detergent-induced changes in kinetic properties appear to reflect alterations in the intrinsic characteristics of glucose-6-phosphatase, which could result from interaction with its membrane environment.  相似文献   

15.
Discontinuities in Arrhenius plots occuring at 18° for both carbamyl-P:glucose phosphotransferase and glucose-6-P phosphohydrolase activities of D-glucose-6-P phosphohydrolase (EC 3.1.3.9) are either eliminated (phosphotransferase) or shifted (phosphohydrolase) by 1 mM spermidine, spermide, or putrescine. Since the observed discontinuity is due to physical changes in the microsomal membrane at 18°, alteration or elimination of the discontinuity upon the addition of polyamine is interpreted to be a result of charge neutralization occurring from the interaction of the polycation with the negative charges on the membrane surface.  相似文献   

16.
The effect of 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide (CMC) on the reactions catalyzed by the glucose-6-phosphatase system of rat liver microsomes was studied. Modification of the intact microsomes by CMC leads to the inhibition of the glucose-6-phosphatase, pyrophosphate:glucose and carbamoyl-phosphate : glucose phosphotransferase activities of the system. The activities are restored by the disruption of the microsomal permeability barrier. The mannose-6-phosphate, pyrophosphate, and carbamoyl-phosphate phosphohydrolase activities of the intact as well as the disrupted microsomes were not affected by CMC. It follows from the results obtained that CMC inactivates the microsomal glucose-6-phosphate translocase, the inactivation is a result of the modification of a single sulfhydryl or amino group of the translocase; pyrophosphate, carbamoyl phosphate and inorganic phosphate are transported across the microsomal membrane without participation of the glucose-6-phosphate translocase; pyrophosphate and carbamoyl phosphate may act as the phosphate donors in the glucose phosphorylation reactions in vivo.  相似文献   

17.
A model for microsomal glucose 6-phosphatase (EC 3.1.3.9) is presented. Glucose 6-phosphatase is postulated to be resultant of the coupling of two components of the microsomal membrane: 1) a glucose 6-phosphate - specific transport system which functions to shuttle the sugar phosphate from the cytoplasm to the lumen of the endoplasmic reticulum; and 2) a catalytic component, glucose-6-P phosphohydrolase, bound to the luminal surface of the membrane. A large body of existing data was shown to be consistent with this hypothesis. In particular, the model reconciles well-documented differences in the kinetic properties of the enzyme of untreated and modified microsomal preparations. Characteristic responses of the enzyme to changes in nutritional and hormonal states may be attributed to adaptations which alter the relative capacities of the transport and catalytic components.  相似文献   

18.
The transport model of glucose-6-phosphatase (EC 3.1.3.9) was recently challenged by a report that detergent treatment had no effect on the presteady state kinetics of glucose-6-P hydrolysis catalyzed at 0 degree C by the enzyme in liver microsomes previously frozen in 0.25 M mannitol (Zakim, D., and Edmondson, D. E. (1982) J. Biol. Chem. 257, 1145-1148). The lack of response to detergent is shown to be the expected consequence of the conditions used in the presteady state measurements. First, when the assay temperature was reduced from 30 to 0 degree C the depression in the glucose-6-P phosphohydrolase activity of intact microsomes (i.e. the system) was much greater than that of fully disrupted microsomes (i.e. enzyme). This indicates that temperature influences transport much more than hydrolysis of glucose-6-P. As a result, the contribution of a small fraction of enzyme associated with disrupted structures is markedly exaggerated, so it becomes the predominant hydrolytic activity before detergent treatment. Second, freezing microsomes in 0.25 M mannitol caused such extensive disruption that all of the activity manifest at 0 degree C could be attributed to enzyme in disrupted structures. The present findings underscore the importance of assessing the state of intactness of "untreated" microsomes and quantifying the contribution of the disrupted component in kinetic analyses of the glucose-6-phosphatase system. The proposition that the detergent-induced changes in the kinetic properties of glucose 6-phosphatase represent removal of constraints imposed on the enzyme by the membrane environment rather than increased access of enzyme to substrate is critically analyzed.  相似文献   

19.
Vanadate has been found to be a potent inhibitor of both the hydrolytic and synthetic activities of the multi- functional enzyme glucose-6-phosphatase (d-glucose-6-phosphatase phosphohydrolase, EC 3.1.3.9). The enzyme, when studied in both microsomal preparations and in situ using permeable isolated hepatocytes, is inhibited by micromolar concentrations of vanadate. The inhibition by vanadate is greater in detergent-treated than in untreated microsomes. In both the microsomal preparations and permeable hepatocytes, the inhibition by vanadate is competitive with the phosphate substrate and is greater for the phosphotransferase than the hydrolase activity of the enzyme. The KI values of vanadate for carbamyl-phosphate : glucose phosphotransferase and glucose-6-phosphate phosphohydrolase determined with permeable hepatocytes are in good agreement with the values determined with detergent-dispersed microsomes. The previously described inhibition of glucose-6-phosphate phosphohydrolase by ATP (Nordlie, R.C., Hanson, T.L., Johns, P.T. and Lygre, D.G. (1968) Proc. Natl. Acad. Sci. USA 60, 590–597) can now be explained by the vanadium contamination of the commercially available ATP samples used. In contrast with glucose-6-phosphatase, hepatic glucokinase and hexokinase were not inhibited by vanadate. Physiological implications and utilitarian experimental applicability of vanadate as a selective metabolic probe, based on these observations, are suggested.  相似文献   

20.
The effect of 4,4'-diisothiocyanostilbene 2,2'-disulfonic acid (DIDS) on microsomal glucose 6-phosphate hydrolysis has been reinvestigated and characterized in order to elucidate the topological and functional properties of the interacting sites of the glucose-6-phosphatase. The studies were performed on microsomal membranes, partially purified and reconstituted glucose-6-phosphatase preparations and show the following. (a) DIDS inhibits activity of the glucose-6-phosphatase of native microsomes as well as the partially purified glucose-6-phosphatase. (b) Inhibition is reversed when the microsomes and the partially purified phosphohydrolase, incorporated into asolectin liposomes, are modified with Triton X-114. (c) Treatment of native microsomes with DIDS and the following purification of glucose-6-phosphatase from these labeled membranes leads to an enzyme preparation which is labeled and inhibited by DIDS. (d) Preincubation of native microsomes or partially purified glucose-6-phosphatase with a 3000-fold excess of glucose 6-phosphate cannot prevent the DIDS-induced inhibition. (e) Inhibition of glucose-6-phosphatase by DIDS is completely prevented when reactive sulfhydryl groups of the phosphohydrolase are blocked by p-mecuribenzoate. (f) Reactivation of enzyme activity is obtained when DIDS-labeled microsomes are incubated with 2-mercaptoethanol or dithiothreitol. Therefore, we conclude that inhibition of microsomal glucose 6-phosphate hydrolysis by DIDS cannot result from binding of this agent to a putative glucose-6-phosphate-carrier protein. Our results rather suggest that inhibition is caused by chemical modification of sulfhydryl groups of the integral phosphohydrolase accessible to DIDS attack itself. An easy interpretation of these results can be obtained on the basis of a modified conformational model representing the glucose-6-phosphatase as an integral channel-protein located within the hydrophobic interior of the microsomal membrane [Schulze et al. (1986) J. Biol. Chem. 261, 16,571-16,578].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号