首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolyl 4-hydroxylase, the key enzyme of collagen synthesis, is an alpha2beta2 tetramer, the beta subunit of which is protein disulfide isomerase (PDI). Coexpression of the human alpha subunit and PDI in Pichia produced trace amounts of an active tetramer. A much higher, although still low, assembly level was obtained using a Saccharomyces pre-pro sequence in PDI. Coexpression with human type III procollagen unexpectedly increased the assembly level 10-fold, with no increase in the total amounts of the subunits. The recombinant enzyme was active not only in Pichia extracts but also inside the yeast cell, indicating that Pichia must have a system for transporting all the cosubstrates needed by the enzyme into the lumen of the endoplasmic reticulum. The 4-hydroxyproline-containing procollagen polypeptide chains were of full length and formed molecules with stable triple helices even though Pichia probably has no Hsp47-like protein. The data indicate that collagen synthesis in Pichia, and probably also in other cells, involves a highly unusual control mechanism, in that production of a stable prolyl 4-hydroxylase requires collagen expression while assembly of a stable collagen requires enzyme expression. This Pichia system seems ideal for the high-level production of various recombinant collagens for numerous scientific and medical purposes.  相似文献   

2.
It was recently reported that co-expression of the proalpha1(III) chain of human type III procollagen with the subunits of human prolyl 4-hydroxylase in Pichia pastoris produces fully hydroxylated and properly folded recombinant type III procollagen molecules (Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T., Kivirikko, K.I., 1997. Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J. 16, 6702-6712). These properly folded molecules accumulated inside the yeast cell, however, only approximately 10% were found in the culture medium. We report here that replacement of the authentic signal sequence of the human proalpha1(III) with the Saccharomyces cerevisiae alpha mating factor prepro sequence led only to a minor increase in the amount secreted. Immunoelectron microscopy studies indicated that the procollagen molecules accumulate in specific membranous vesicular compartments that are closely associated with the nuclear membrane. Prolyl 4-hydroxylase, an endoplasmic reticulum (ER) lumenal enzyme, was found to be located in the same compartments. Non-helical proalpha1(III) chains produced by expression without recombinant prolyl 4-hydroxylase likewise accumulated within these compartments. The data indicate that properly folded recombinant procollagen molecules accumulate within the ER and do not proceed further in the secretory pathway. This may be related to the large size of the procollagen molecule.  相似文献   

3.
The C-propeptides of the pro alpha chains of type I and type III procollagens are believed to be essential for correct chain recognition and chain assembly in these molecules. We studied here whether the 30-kDa C-propeptides of the human pC alpha 1(I), pC alpha 2(I), and pC alpha 1(III) chains, i.e. pro alpha chains lacking their N-propeptides, can be replaced by foldon, a 29-amino acid sequence normally located at the C terminus of the polypeptide chains in the bacteriophage T4 fibritin. The alpha foldon chains were expressed in Pichia pastoris cells that also expressed the two types of subunit of human prolyl 4-hydroxylase; the foldon domain was subsequently removed by pepsin treatment, which also digests non-triple helical collagen chains, whereas triple helical collagen molecules are resistant to it. The foldon domain was found to be very effective in chain assembly, as expression of the alpha 1(I)foldon or alpha 1(III)foldon chains gave about 2.5-3-fold the amount of pepsin-resistant type I or type III collagen homotrimers relative to those obtained using the authentic C-propeptides. In contrast, expression of chains with no oligomerization domain led to very low levels of pepsin-resistant molecules. Expression of alpha 2(I)foldon chains gave no pepsin-resistant molecules at all, indicating that in addition to control at the level of the C-propeptide other restrictions at the level of the collagen domain exist that prevent the formation of stable [alpha 2(I)]3 molecules. Co-expression of alpha 1(I)foldon and alpha 2(I)foldon chains led to an efficient assembly of heterotrimeric molecules, their amounts being about 2-fold those obtained with the authentic C-propeptides and the alpha 1(I) to alpha 2(I) ratio being 1.91 +/- 0.31 (S.D.). As the foldon sequence contains no information for chain recognition, our data indicate that chain assembly is influenced not only by the C-terminal oligomerization domain but also by determinants present in the alpha chain domains.  相似文献   

4.
Recombinant DNA probes specific for the human pro alpha 1(II) and pro alpha 1(III) collagen chains have been used for the chromosomal localization of the two genes. Restriction endonuclease analysis of DNA from human-rodent hybrid cell lines in conjunction with in situ hybridization of human metaphasic chromosomes have shown that the gene coding for the pro alpha 1 chain of type II collagen (COL2A1) is located on chromosome 12 in the segment 12q131----12q132. Likewise, the gene coding for the pro alpha 1 chain of type III collagen (COL3A1) was assigned to the segment 2q31----2q323 of chromosome 2.  相似文献   

5.
Dermal fibroblast cultures from three siblings with a severe form of osteogenesis imperfecta were established in order to analyze their procollagen and collagen synthesis. Cell strains from clinically normal consanguineous parents (first cousins), were also obtained for comparison. Total collagen production in culture media was diminished by 55% in the patients fibroblasts and to a lesser extent in the parents. This decrease was specific for collagenous proteins. From polyacrylamide gel electrophoresis, it appeared that the three children had not only the same defective secretion of pro alpha 1(I) molecules but that their pro alpha 1(I) migrated slightly faster than the parental and control counterparts. Analysis of secretion confirmed a reduced rate in procollagen synthesis and the absence of intracellular storage. Upon pepsin treatment, extracellular alpha 1(I) and alpha 2(I) chains were found in the expected ratio of 2:1 and migrated normally, suggesting that the altered mobility of pro alpha 1(I) chains was related to COOH or NH2 terminal propeptides. In agreement with the reduced type I collagen production, an increase in the alpha 1(III)/alpha 1(I) ratio was also detected. Furthermore, after a 2.5-h labelling followed by alkylation with iodoacetamide, free intracellular pro alpha 2(I) and alpha 1(I) chains were detected in the absence of reduction, consistent with an abnormal intracellular ratio of pro alpha 1(I)/pro alpha 2(I) that was measured after dithiothreitol reduction. Analysis of intracellular collagen chains from parental strains following a 4-h incubation demonstrated that pro alpha 1(I) appeared as a doublet, one band with normal mobility and a less intense band migrating faster and corresponding to the defective chain found in the patients. Absence of the abnormal molecules in culture media was related to the demonstration of a defective collagen secretion by parental fibroblasts. Correlation between these biochemical findings and clinical data strongly support a recessive inheritance of the disease that could be classified as a type III form of osteogenesis imperfecta. Patients would be homozygous for the same defective allele and the asymptomatic parents would most likely be heterozygous carriers of the mutation. Although the exact location of the alteration is not yet elucidated, a splicing mutation is suggested.  相似文献   

6.
The electrophoretic mobilities of the collagen and procollagen type I and III chains synthesized by the fibroblasts isolated from patients with type I Ehlers-Danlos syndrome as well as a set of peptides obtained by splitting of pro alpha 1(I) and pro alpha 2(I) type I procollagens by cyanbromide are not different from the normal ones. The fact demonstrates the absence of long insertions or deletions, or the sufficient defects in intracellular chain modifications. The changes were also nor registered for the ratio of type I and III collagens from the digested by pepsin preparations of protein accumulating in the culture media of the cultured skin fibroblasts from patients. The studied strains of cultured fibroblasts from patients suffering the Ehlers-Danlos syndrome have the trend to increased accumulation of partially processed chains of proc alpha 1(I) and proc alpha 2(I) type I procollagen and to the increased ratio of pro alpha 1(I) to pro alpha 2(I).  相似文献   

7.
8.
The collagenous protein synthesized by cultured Chinese hamster lung (CHL) cells and present in the culture medium has been isolated after limited pepsin digestion and differential salt precipitation. Molecular size analysis of this material indicates that the CHL cell medium collagen contains chains which exhibit an apparent molecular mass of approximately 85,000 Da. When chromatographed on CM-cellulose under denaturing conditions, the reduced and alkylated CHL cell medium collagen chains elute slightly after the human alpha1(I) chain but well before the pepsin-derived alpha1(V) chain, which is the constituent chain present in the CHL cell cellular matrix collagen. Analysis of the peptides derived by CNBr cleavage of the CHL medium collagen chains by chromatography on CM-cellulose reveals, however, that these chains contain peptides which correspond both in size and in chemical properties to those derived from the alpha1(V) collagen chain, but clearly lack two peptides (alpha1(V)-CB4 and alpha1(V)-CB5) which are normally present in pepsin-derived alpha1(V) chains. Furthermore, analysis of the CHL cell culture medium collagenous material obtained without pepsin digestion indicates the presence of collagenous chains that exhibit after reduction a molecular mass of approximately 160,000 Da, which is smaller than the proposed size of the pro alpha1(V) collagen chain. These results demonstrate that the collagenous protein present in the culture medium of CHL cells is directly related at the primary structural level to the alpha1(V) collagen chain, and it is postulated that this material represents the large fragment derived from a collagenase cleavage of the [pro alpha1(V)]3 molecules present in the cell layer. Furthermore, these results and previous reports indicate that the only identifiable genetic type of procollagen chain synthesized by this cloned cell line in culture corresponds to the pro alpha1(V) chain.  相似文献   

9.
We have used specific oligonucleotide probes to measure the effect of hydralazine on mRNA levels of the alpha and beta subunits of prolyl 4-hydroxylase (PH), a key post-translational modifying enzyme in collagen biosynthesis. Hydralazine exerts a paradoxical effect on collagen biosynthesis in cultured fibroblasts. Cells exposed to hydralazine synthesize substantially reduced amounts of collagen, which is severely deficient in hydroxyproline. Surprisingly, however, the level of prolyl hydroxylase activity assayed in extracts of treated cells is markedly increased, suggesting overproduction of the enzyme. Hybridization analysis indicated that in untreated cells the concentration of the alpha PH subunit mRNA was about 20-25% of the beta PH subunit mRNA concentration. Hydralazine treatment increased the mRNAs for both alpha and beta subunits of PH by three- to fourfold. A differential induction of these mRNAs was observed, however. The alpha subunit mRNA was maximally increased within 24 h, whereas the beta subunit mRNA was increased more slowly, reaching a maximum at 72 h. In contrast, the 5.8 and 4.8-kb mRNAs for pro alpha 1(I) collagen were virtually eliminated by 72 h. This study demonstrates that the increased prolyl hydroxylase activity is a direct result of hydralazine-mediated increases in steady state mRNA content for the alpha and beta subunits of this enzyme. Moreover, the earlier induction of alpha PH mRNA may provide the first evidence at the mRNA level that regulation of PH activity occurs mainly through regulation of the alpha subunit of PH. In addition, the decrease in collagen synthesis by hydralazine appears to result directly from suppression of both species of mRNA for pro alpha 1(I) collagen.  相似文献   

10.
Peptides prepared from the amino termini of pro alpha 1(I) and pro alpha 1(III) collagen chains inhibit the production of pro alpha 1(I) and pro alpha 2 by rat calvaria rna in a reticulocyte cell-free system. The synthesis of other proteins was not altered, suggesting a specific effect on collagen production. Various peptides from the helical region of the alpha 1(I) chain did not alter translation. These studies, taken together with earlier studies showing inhibition of collagen synthesis by cells in culture receiving the amino-terminal peptides, are consistent with a regulatory function in collagen synthesis for the amino-terminal peptides from procollagen.  相似文献   

11.
Biosynthesis and regulation of type V collagen in diploid human fibroblasts   总被引:11,自引:0,他引:11  
The biosynthesis of type V collagen and its regulation were studied using diploid human gingival fibroblasts. Cells were metabolically labeled with radioactive amino acids and labeled proteins were subjected to limited pepsin digestion, DEAE-cellulose chromatography at 15 degrees C, and polyacrylamide gel electrophoresis. Proteins eluted from DEAE-cellulose columns by 0.25 M NaCl contained a collagen species which was resistant to mammalian collagenase and had alpha chains with hydroxylysine/lysine ratios and CNBr peptide patterns similar to alpha 1(V) and alpha 2(V). Procollagen(V) fractions obtained by DEAE-cellulose chromatography and immunoprecipitates of type V collagen antibody contained polypeptides with Mr = 239,000, 219,000, 198,000, 174,000, 157,000, and 132,000. By comparing the CNBr peptide maps of these proteins with those of standard alpha 1(V) and alpha 2(V) chains, the first three polypeptides were shown to be related to alpha 1(V) and the others to alpha 2(V). It was concluded that the gingival fibroblasts synthesize type V collagen, that the pro alpha 1(V) and the pro alpha 2(V) chains have Mr = 239,000 and 174,000, respectively, and that the alpha 1(V) and alpha 2(V) chains laid in the form of fibrils have Mr = 198,000 and 132,000, respectively. A detectable amount of type V collagen was synthesized only at high cell density, and it was associated with the cell layer. The amount and proportion of type V synthesized were increased when the cells were labeled in the presence of serum, and the increase was accompanied by a decrease in type III. This effect was dependent on serum concentration. Serum obtained from platelet-poor plasma failed to elicit this effect, and it was restored by the addition of platelet-derived growth factor. Platelet-derived growth factor was effective in medium with and without platelet-poor serum. Thus, it appears that platelet-derived growth factor may be an important regulatory factor in the synthesis of types V and III collagens.  相似文献   

12.
13.
Collagen defects in lethal perinatal osteogenesis imperfecta.   总被引:15,自引:3,他引:12       下载免费PDF全文
Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.  相似文献   

14.
15.
Expression of type I and III procollagen genes was studied in embryonic chicken myoblast cell cultures, obtained from thigh muscles of 11-day-old embryos. Differentiation initiated by the addition of ovotransferrin (30 micrograms/ml) was followed visually by phase-contrast microscopy. Myoblast fusion and myotube formation were detected by day 3 and appeared to be complete by day 7. The synthesis of procollagens was monitored by labeling cell cultures for 1 h with [3H]proline and determining the radioactivity in procollagen chains by scanning densitometry of the fluorograms of the sodium dodecyl sulfate-polyacrylamide gels. A 10- to 20-fold increase in the rate of pro alpha-1(I), pro alpha-2(I), and pro alpha-1(III) collagen synthesis was observed, with the greatest increase occurring between days 3 and 9. Collagen mRNA levels in the myoblast cultures were examined by Northern blot and dot blot hybridization assays. The 10- to 20-fold increased rate of protein synthesis was accompanied by a 15-fold increase in the steady-state levels of pro alpha-1(I) and pro alpha-2(I) mRNAs and a 10-fold increase in the steady-state levels of pro alpha-1(III). As a correlate to the studies of collagen expression during myoblast differentiation, the expression of actin mRNAs was examined. Although alpha actin could be detected by day 4, a complete switch from lambda and beta to alpha actin was not observed in the time periods examined. Similar results were obtained in the analysis of RNA extracted from embryonic legs at days 12 and 17 of gestation. Myoblast differentiation is manifested by the accumulation of both muscle-specific mRNAs, such as actin, and type I and III procollagen mRNAs.  相似文献   

16.
17.
Insoluble collagen was prepared from bovine periodontal ligament. Isolation and characterization of CNBr peptides originating from the alpha1(I), alpha2, and alpha1(III) chains showed that the tissue contained both type I and type III collagens. Further evidence for the presence of type III collagen was obtained by the isolation of alpha1(III) chains from pepsin-treated ligament collagen, with properties similar to those of human alpha1(III) chains. Estimates based on the amounts of certain CNBr peptides indicated that about one-fifth of the collagen of periodontal ligament is type III, the remainder being type I collagen.  相似文献   

18.
19.
S Ayad  A P Kwan  M E Grant 《FEBS letters》1987,220(1):181-186
Sequential extraction of bovine growth-plate cartilage with 4 M guanidinium chloride and pepsin was used to identify the intact and pepsinized forms respectively of type X collagen. This collagen occurs predominantly as the processed [alpha 1(X)]3 form in vivo, although the procollagen [pro alpha 1(X)]3 form can also be detected. The bovine pro alpha 1(X) and alpha 1(X) chains have Mr values identical to the corresponding chick species (Mr 59,000 and 49,000). However, the pepsinized alpha 1(X)p chains (Mr 47,000) are larger than those of the chick (Mr 45,000), and the bovine collagen type X is further distinguished by being disulphide-bonded within the triple-helical domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号