首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have replaced the pyridyl ring of trovirdine with an alicyclic cyclohexenyl, adamantyl or cis-myrtanyl ring. Only the cyclohexenyl-containing thiourea compound N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-bromopyridyl)]- thiourea (HI-346) (as well as its chlorine-substituted derivative N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-chloropyridyl)]- thiourea/HI-445) showed RT inhibitory activity. HI-346 and HI-445 effectively inhibited recombinant RT with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cell-free RT inhibition assays was: HI-346 (IC50 = 0.4 microM) > HI-445 (IC50 = 0.5 microM) > trovirdine (IC50 = 0.8 microM) > MKC-442 (IC5 = 0.8 microM) = delavirdine (IC50 = 1.5 microM) > nevirapine (IC50 = 23 microM). In accord with this data, both compounds inhibited the replication of the drug-sensitive HIV-1 strain HTLV(IIIB) with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cellular HIV-1 inhibition assays was: HI-445 = HI-346 (IC50 = 3 nM) > MKC-442 (IC50 = 4 nM) = AZT (IC50 = 4 nM) > trovirdine (IC50 = 7 nM) > delavirdine (IC50 = 9 nM) > nevirapine (IC50 = 34 nM). Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLV(IIIB) with wild-type RT. HI-346 and HI-445 were 20-times more potent than trovirdine, 200-times more potent than AZT, 300-times more potent than MKC-442, 400-times more potent than delavirdine, and 5000-times more potent than nevirapine against the multidrug resistant HIV-1 strain RT-MDR. HI-445 was also tested against the RT Y181C mutant A17 strain of HIV-1 and found to be >7-fold more effective than trovirdine and >1,400-fold more effective than nevirapine or delavirdine. Similarly, both HI-346 and HI-445 were more effective than trovirdine, nevirapine, and delavirdine against the problematic NNI-resistant HIV-1 strain A17-variant with both Y181C and K103N mutations in RT, although their activity was markedly reduced against this strain. Neither compound exhibited significant cytotoxicity at effective concentrations (CC50 >100 microM). These findings establish the lead compounds HI-346 and HI-445 as potent inhibitors of drug-sensitive as well as multidrug-resistant stains of HIV-1.  相似文献   

2.
3.
4.
5.
As part of an investigation to generate optimized drug leads from marine natural pharmacophores for the treatment of neoplastic and infectious diseases, a series of novel isoaaptamine analogs were prepared by coupling acyl halides to the C9 position of isoaaptamine (2) isolated from the Aaptos sponge. This library of new semisynthetic products was evaluated for biological activity against HIV-1, Mtb, AIDS-OI, tropical parasitic diseases, and cancer. Compound 4 showed potent activity against HIV-1 (EC50 0.47 μg/mL), compound 19 proved to possess remarkable activity against Mycobacterium intracellulare with an IC50 and MIC value of 0.15 and 0.31 μg/mL, while compounds 4 and 17 possessed anti-leishmanial activity with IC50 values of 0.1 and 0.4 μg/mL, respectively. Compounds 16 and 17 showed antimalarial activity with EC50 values of 230 and 240 ng/mL, respectively, and compound 14 exhibited an EC50 of 0.05 μM against the Leukemia cell line K-562.  相似文献   

6.
A series of (E)-1-phenylbut-1-en-3-ones, based on the naturally occurring (E)-1-(4′-hydroxyphenyl)but-1-en-3-one [IC50 (K562) 60 μM], was synthesised and screened for cytotoxic activity against the K562 human leukaemia cell line. (E)-1-(Pentafluorophenyl)but-1-en-3-one [IC50 (K562) 1.8 μM] was found to be over 30-fold more active than 1.  相似文献   

7.
5e-tert-Butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithianes with selected functional groups (R) on the ethynyl moiety are potent blockers of the GABA-gated chloride channel measured as inhibitor concentration (IC50) for 4-n-[3H]propyl-1-(4-ethynylphenyl)-2, 6,7-trioxabicyclo[2.2.2]octanebinding to bovine brain membranes. The terminal R substituents were introduced by coupling 5e-tert-butyl-2e-(4-iodophenyl)-1,3-dithiane with HC ≡ CR or 5e-tert-butyl-2e-(4-ethynylphenyl)-1,3-dithiane with XR. The potency of the parent compound (R=H) with an IC50 of 21 μM is equaled or exceeded by up to 7-fold (i.e. IC50 = 3–21 μM) by several carboxylic acids [R = (CH2)nCO2H (n = 0–3), (CH2nOCH2CO2H (n = 1–3) and CH2SCH2 CO2H] and their esters and two phosphonic acids (CH2CH2PO3H2 and CH2OCH2PO3H2) but not their esters. These carboxyl and phosphonic acids (and their salts) include the most potent water-soluble chloride channel blockers known. Conversion to the monosulfones increases activity of the R = H and CH2OH analogs by 1.2- to 3-fold but decreases that of the R = CH2CH2CO2R′ (R′ = H or CH3) derivatives by 3- to 13-fold. Quantitative structure-activity analyses for 44 2-[4-(substituted-ethynyl)phenyl]-dithianes suggests that the principal feature of the R substituent for high activity is its polarizable volume modeled as molecular refractivity, i.e. this substituent is not a well-defined pharmacophore and undergoes a structurally non-specific interaction with the receptor. These observations lay the background for preparing candidate affinity probes.  相似文献   

8.
Aromatic analogs of arcaine were shown to have inhibitory effects on the binding of the channel blocking drug [3H]MK-801 to the NMDA receptor complex. The most potent compound of the series was an N,N′-bis(propyl)guanidinium which inhibited [3H]MK-801 binding with an IC50 of 0.58 μM and an IC50 of 12.17 μM upon addition of 100 μM spermidine. The increase in IC50 upon addition of spermidine suggests competitive antagonism between the inhibitor and spermidine at the arcaine-sensitive polyamine site of the NMDA receptor complex.  相似文献   

9.
10.
11.
A series of novel S-DABO analogues of 5-alkyl-2-arylthio-6-((3,4-dihydroquinolin-1(2H)-yl)methyl)pyrimidin-4(3H)-ones were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were compounds 6c1,6c6, and 6b1 (EC(50)=0.24 ± 0.05, 0.38 ± 0.13, 0.39 ± 0.05 μM, respectively), which possess improved or similar HIV-1 inhibitory activity compared with nevirapine (NVP) (EC(50)=0.21 μM) and delavirdine (DLV) (EC(50)=0.32 μM). None of these compounds were active against HIV-2 replication. Furthermore, enzyme inhibitory assays were performed with selected derivatives against HIV-1 wtRT, confirming that the main target of these compounds is the HIV-1 RT and these new S-DABOs are acting as NNRTIs. The preliminary structure-activity relationship (SAR) of these new congeners is discussed briefly and rationalized by docking studies.  相似文献   

12.
A series of 3-(2-methoxytetrahydrofuran-2-yl)pyrazoles (4–10) was synthesized. The compounds were evaluated for their ability to inhibit cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) activity in human whole blood (HWB). The compound, 5-(4-methanesulfonylphenyl)-3-(2-methoxytetrahydrofuran-2-yl)-1-p-tolyl-1H-pyrazole 5 showed potent and selective COX-2 inhibition (IC50 for COX-1: >100 μM and COX-2: 1.2 μM).  相似文献   

13.
Pentachlorophenol (PCP) and 1-nitro-2-naphthol were found to be potent inhibitors of enzymatic acetyl-CoA dependent activation, which is suggested as proceeding through direct O-acetylation, of N-hydroxyarylamines to tRNA binding by liver cytosolic enzymes from hamsters and rats. IC50 values of PCP for the activation of 2-hydroxyamino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole (N-OH-Glu-P-1), 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2) and N-hydroxy-2-aminofluorene (N-OH-AF) were 20, 25 and 17 μM, respectively, in hamster cytosol system. Similar inhibition was observed with rat liver cytosol (IC50 values of PCP and 1-nitro-2-naphthol were 13 and 12 μM, respectively, for the binding of N-OH-Glu-P-1). PCP is known as an inhibitor of sulfotransferase; however, another potent inhibitor of sulfotransferase, 2,6-dichloro-4-nitrophenol, did not inhibit the acetyl-CoA dependent binding. Antibiotic thiolactomycin, which inhibits bacterial O-acetyltransferase, did not affect the activation by hamster and rat cytosol, indicating the difference in property between bacterial and mammalian enzymes. The kinetic data obtained with hamster cytosol suggested the competitive inhibition of PCP with substrate, N-OH-Glu-P-1, and non-competitive inhibition with acetyl-CoA. In addition to the O-acetylation, PCP and 1-nitro-2-naphthol also inhibited N-acetylation of arylamines and N, O-acetyltransfer reaction of N-hydroxy-2-acetylaminofluorene (N-OH-AAF) by hamster cytosol. IC50 values for these two types of acetyltransfer reactions, however, were slightly higher than those observed for acetyl-CoA dependent activations of N-hydroxyarylamines.  相似文献   

14.
(1S,2R)-1-Phenyl-2-[(S)-1-aminopropyl]-N,N-diethylcyclopropanecarboxamide (PPDC, 4a), which is a conformationally restricted analogue of antidepressant milnacipran [(±)-1], is a new class of potent noncompetitive NMDA receptor antagonists. A series of PPDC analogues modified at the 1-phenyl moiety, that is, the analogue 6 lacking 1-phenyl group, the 1-(fluorophenyl) analogues 4b,c,d, the 1-(methylphenyl) analogues 4e–g and the 1-(naphthyl) analogues 4h,i were synthesized. Analogue 6, lacking the 1-phenyl group, was completely inactive showing that the aromatic moiety is essential for the NMDA receptor binding. Among the analogues synthesized, the 1-o-fluorophenyl and 1-m-fluorophenyl analogues 4b and 4c showed potent affinities for the NMDA receptor [IC50=0.16±0.001 μM (4b), 0.15±0.02 μM (4c)], which were improved to some extent compared to those of the parent compound PPDC (IC50=0.20±0.02 μM). On the other hand, compounds 4b and 4c showed none of the 5-HT-uptake inhibitory effect, while PPDC turned out to be a weak 5-HT-uptake inhibitor.  相似文献   

15.
Phospholipid conjugates of 3′-azido-3′-deoxythymidine (AZT) show activity against the human immunodeficiency virus (HIV) in vitro. In a previous report (K.Y. Hostetler, L.M. Stuhmiller, B.H.M. Lenting, H. van den Bosch and D.D. Richman (1991), J. Biol. Chem. 265, 6112–6117) the syntheses and anti-HIV activities of AZT mono- and diphosphate diglyceride have been described. We now report on the synthesis, characterization and biological activity of 3′-azido-3′-deoxythymidine triphosphate distearoylglycerol (AZTTP-DSG). The compound was prepared by the condensation of AZT diphosphate with distearoylphosphatidic acid morpholidate in anhydrous pyridine at room temperature and purified by means of high-performance liquid chromatography using a silica column. Characterization was performed with 31P-NMR and IR analyses and determination of the fatty acid, phosphorus and nucleoside content of the product. AZTTP-DSG inhibited HIV-1 replication in both CEM and HT4-6C cells at a level intermediate in potency between its mono- and diphosphate analogs. The IC50 values of AZTTP-DSG were 0.33 and 0.79 μM in these two cell lines, respectively. In addition, AZTTP-DSG was less toxic to CEM cells in vitro than the other AZT liponucleotides and reduced viable cell numbers in this cell type by 50% at 1000 μM. Initial studies on the metabolism of AZTTP-DSG revealed that both AZT and AZT monophosphate were liberated from the lipid pro-drug by a rat liver mitochondrial enzyme preparation. These phospholipid derivatives of AZT nucleotides represent pro-drugs for the intracellular delivery of phosphorylated antiviral nucleoside analogs.  相似文献   

16.
17.
A novel series of 2-arylcarbonylmethylthio-6-arylmethylpyrimidin-4(3H)-ones have been synthesized and evaluated for in vitro anti-HIV activities in MT-4 cells. Most of these new compounds showed moderate to potent activities against wild-type HIV-1 with an EC(50) range from 8.97 microM to 0.010 microM. Among them, the 6-(3,5-dimethylbenzyl) analogue 5p was identified as the most promising compound (EC(50)=0.010 microM, SI>31,800) associated with moderate activity against the HIV-1 double mutant RT strain K103N+Y181C. The structure-activity relationships of these new congeners were further discussed.  相似文献   

18.
In our continuous efforts to identify novel potent HIV-1 NNRTIs, a novel class of 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives were rationally designed, synthesized and evaluated for their anti-HIV activities in MT4 cell cultures. Biological results showed that most of the tested compounds displayed excellent activity against wild-type HIV-1 with a wide range of EC50 values from 5.98 to 0.07 μM. Among the active compounds, 5a was found to be the most promising analogue with an EC50 of 0.07 μM against wild-type HIV-1 and very high selectivity index (SI, 3999). Compound 5a was more effective than the reference drugs nevirapine (by 2-fold) and delavirdine (by 2-fold). In order to further confirm their binding target, an HIV-1 RT inhibitory assay was also performed. Furthermore, SAR analysis among the newly synthesized compounds was discussed and the binding mode of the active compound 5a was rationalized by molecular modeling studies.  相似文献   

19.
A series of 22 aromatic guanyl hydrazones, prepared by condensation of several aldehydes with aminoguanidine hydrochloride, were fully characterized by NMR techniques and tested in vitro against the trypomastigote form of Trypanosoma cruzi, the causative agent of Chagas disease. Most of the compounds, especially those without hydrogen bonding groups and possessing ortho-substitution, were significantly more active than crystal violet (ID50 536 μM). The most active compound has an ID50 value of 17 μM (25 times more potent than gentian violet).  相似文献   

20.
Curcumin, a relatively non-toxic natural product isolated from Curcuma longa, is a modest inhibitor of the HIV-1 (1050 = 100 μM) and HIV-2 (IC50 = 250 μM) proteases. Simple modifications of the curcumin structure raise the IC50 value but complexes of the central dihydroxy groups of curcumin with boron lower the IC50 to a value as low as 6 μM. The boron complexes are also time-dependent inactivators of the HIV proteases. The increased affinity of the boron complexes may reflect binding of the orthogonal domains of the inhibitor in intersecting sites within the substrate-binding cavity of the enzyme, while activation of the ,β-unsaturated carbonyl group of curcumin by chelation to boron probably accounts for time-dependent inhibition of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号