首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of treatment with DHEA (0.2 mg or 1.0 mg / kg body weight for 7 days) on oxidative energy metabolism on liver mitochondria from developing and young adult rats were examined. Treatment with DHEA resulted in a progressive dose-dependent increase in the liver weights of the developing animals without change in the body weight. In the young adult rats treatment with 1.0 mg DHEA showed increase only in the body weight. Treatment with DHEA stimulated state 3 and state 4~respiration rates in developing as well as young adult rats in dose-dependent manner with all the substrates used; magnitude of stimulation was age-dependent. In young adults the extent of simulation of state 3 respiration rates declined at higher dose (1.0~mg) of DHEA with glutamate and succinate as substrates. Stimulation of state 3 respiration rates was accompanied by increase in contents of cytochrome aa3, b and c + c1 and stimulation of ATPase and dehydrogenases activities in dose- and age-dependent manner.  相似文献   

2.
In previous studies on the rhodanese activity of bovine liver mitochondria, we have shown that in addition to activity observed in the soluble protein fraction, there is rhodanese activity that is bound to the mitochondrial membrane. The latter activity accounts for as much as 40% of the total and, in situ, is associated in a multiprotein complex that forms iron-sulfur centers. In the present studies, we have investigated the rhodanese activity of bovine heart muscle. We have found that the major part of this enzyme activity is localized in the mitochondria and, further, that at least 25% of the total rhodanese activity of heart mitochondria is membrane-bound. As in liver tissue, the heart activity at least in part is associated in a multiprotein complex that forms iron-sulfur centers. Upon purification of the heart rhodanese in the soluble protein fraction, there is a 10- to 30-fold decrease inK m values for the standard assay substrates thiosulfate and cyanide ions. These observations are consistent with the interpretation that there are activated and deactivated (low activity) forms of the heart enzyme in crude extracts, but only the activated form survives purification. The present results, together with our recent finding that liver mitochondrial rhodanese is subject to phosphorylation, lend support to our proposal that the rhodaneses serve as converter enzymes which regulate the rate of electron transport through sulfuration of respiratory chain components. The rhodaneses, in turn, are controlled by protein kinases and the local ATP concentration.  相似文献   

3.
The acid-insoluble product isolated from well-oxygenated Langendorff rat heart after perfusion with [14C]adenosine was purified by phenol extraction and subjected to specific phosphorolysis by pure polynucleotide phosphorylase. TLC analysis of the reaction mixture showed that ADP was the only radioactive product, proving that the original substance was a polyribonucleotide. Studies of the time course of labelling and of the distribution of the acid-insoluble product between the mitochondrial and nuclear fractions showed that both are labelled even after 1 min at 25 °C, but at short times and low temperature more radioactivity is found in the mitochondria. The kinetics of adenosine incorporation resemble those expected for the labelling of hnRNA and mRNA. Isolated, respiring mitochondria incorporate adenosine and adenine nucleotides into acid insoluble form by a process dependent on oxidative phosphorylation and the adenine nucleotide translocase that is specific for adenine derivatives. The results are discussed in terms of the hypothesis that the polyribonucleotide might be a storage form of adenine nucleotides: it is concluded that the bulk of the labelled product is unlikely to play a major role in energy metabolism.  相似文献   

4.
目的:探讨有氧运动对衰老大鼠骨骼肌线粒体能量代谢的影响。方法:将20只12月龄的雌性Wistar大鼠随机分为老年安静组(AC,n=10)及老年运动组(AE,n=10),另取10只2月龄的雌性Wistar大鼠为青年安静组(YC,n=10);安静组大鼠进行正常饲养,运动组大鼠进行坡度为5°,速度为15.2 m/min,第1天运动15 min、第2天运动30 min、从第3天开始每天运动45 min,每周6 d,共12周。12周后所有大鼠断头处死,取腓肠肌样本,差速离心法提取线粒体,测定SOD和GSH-Px活性、MDA含量、三羧酸循环限速酶(CS、ICD和α-KGDHC)活性及呼吸链酶复合体(RCCⅠ~Ⅳ)活性。结果:①与YC组相比,AC组骨骼肌线粒体SOD活性和MDA含量显著增加(P<0.05),CS和α-KGDHC活性均显著降低(P<0.05),RCCⅠ、RCCⅡ和RCCⅣ活性均显著下降(P<0.05),RCCⅢ活性显著升高(P<0.05);AE组骨骼肌线粒体SOD、GSH-Px活性和MDA含量均显著增加(P<0.01),CS、ICD和α-KGDHC活性均显著升高(P<0.01),RCCⅠ~Ⅳ活性均显著升高(P<0.01)。②与AC组相比,AE组骨骼肌线粒体SOD、GSH-Px活性均显著升高(P<0.05),MDA含量显著下降(P<0.05),CS、ICD、α-KGDHC和RCCⅠ~Ⅳ活性均显著升高(P<0.01)。结论:有氧运动可以提高老年大鼠骨骼肌线粒体抗氧化能力,降低脂质过氧化水平,提高三羧酸循环及呼吸链功能,促进线粒体能量代谢,延缓衰老过程中线粒体的退行性变化。  相似文献   

5.
The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In contrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.  相似文献   

6.
The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In constrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.  相似文献   

7.
This work characterizes the mitochondrial proteomic profile in the failing heart and elucidates the molecular basis of mitochondria in heart failure. Heart failure was induced in rats by myocardial infarction, and mitochondria were isolated from hearts by differential centrifugation. Using two-dimen- sional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry, a system biology approach was employed to investigate differences in mitochondrial proteins between normal and failing hearts. Mass spectrometry identified 27 proteins differentially expressed that involved in energy metabolism. Among those, the up-regulated proteins included tricarboxylic acid cycle enzymes and pyruvate dehydrogenase complex subunits while the down-regulated proteins were involved in fatty acid oxidation and the OXPHOS complex. These results suggest a substantial metabolic switch from free fatty acid oxidation to glycolysis in heart failure and provide molecular evidence for alterations in the structural and functional parameters of mitochondria that may contribute to cardiac dysfunction during ischemic injury.  相似文献   

8.
Glutamate is involved in cerebral ischemic injury, but its role has not been completely clarified and studies are required to understand how to minimize its detrimental effects, contemporarily boosting the positive ones. In fact, glutamate is not only a neurotransmitter, but primarily a key metabolite for brain bioenergetics. Thus, we investigated the relationships between glutamate and brain energy metabolism in an in vivo model of complete cerebral ischemia of 15 min and during post‐ischemic recovery after 1, 24, 48, 72, and 96 h in 1‐year‐old adult and 2‐year‐old aged rats. The maximum rates (V max) of glutamate dehydrogenase (GlDH ), glutamate‐oxaloacetate transaminase, and glutamate‐pyruvate transaminase were assayed in somatic mitochondria (FM ) and in intra‐synaptic ‘Light’ mitochondria and intra‐synaptic ‘Heavy’ mitochondria ones purified from cerebral cortex, distinguishing post‐ and pre‐synaptic compartments. During ischemia, none of the enzymes were modified in adult animals. In aged ones, glutamate‐oxaloacetate transaminase was increased in FM and GlDH in intra‐synaptic ‘Heavy’ mitochondria, stimulating glutamate catabolism. During post‐ischemic recovery, FM did not show modifications at both ages while, in intra‐synaptic mitochondria of adult animals, glutamate catabolism was increased after 1 h of recirculation and decreased after 48 and 72 h, whereas it remained decreased up to 96 h in aged rats. These results, with those previously published about Krebs’ cycle and Electron Transport Chain (Villa et al ., [2013] Neurochem. Int . 63, 765–781), demonstrate that: (i) V max of energy‐linked enzymes are different in the various cerebral mitochondria, which (ii) respond differently to ischemia and post‐ischemic recovery, also (iii) with respect to aging.

  相似文献   

9.
Regulation of cellular energy metabolism   总被引:10,自引:0,他引:10  
  相似文献   

10.
利用核磁共振同时观测大鼠心室内压参数与能量代谢   总被引:1,自引:0,他引:1  
Cheng ZJ  Du ZH  Li HX  Dong HJ  Feng R  Li GY 《生理学报》1999,(6):700-704
本文介绍一种在核磁共振(nuclear magnetic resonance,NMR)谱仪上对大鼠主室内压参数与能量代谢同时测定的技术。该方法采用离体等容大鼠心功能监测系统测量和分析心脏的心室内压参数,通过测定心脏的磷-31核磁共振(^31P NMR)谱观测心肌组织的能量代谢状态。  相似文献   

11.
In this study we have measured, under experimental conditions which maintained efficient coupling, respiratory intensity, respiratory control, oxidative phosphorylation capacity and protonmotive force. Succinate cytochrome-c reductase and cytochrome-c oxidase activities were also studied. These investigations were carried out using kidney mitochondria from cyclosporine-treated rats (in vivo studies) and from untreated rats in the presence of cyclosporine (in vitro studies). Inhibition of respiratory intensity by cyclosporine did not exceed 21.1% in vitro and 15.9% in vivo. Since there was no in vitro inhibition of succinate cytochrome-c reductase and cytochrome-c oxidase activities, the slowing of electron flow observed can be interpreted as a consequence of an effect produced by cyclosporine between cytochromes b and c1. Cyclosporine had no effect on respiratory control either in vitro or in vivo. Statistically significant inhibition of the oxidative phosphorylation was observed both in vitro (6.6%) and in vivo (12.1%). Moreover, cyclosporine did not induce any change of membrane potential either in vivo or in vitro. Our findings show that cyclosporine is neither a protonophore, nor a potassium ionophore. In cyclosporine-treated rats we noticed a decrease of protein in subcellular fraction, including the mitochondrial fraction. The role of the inhibition respiratory characteristics by cyclosporine in nephrotoxicity in vivo must take account of these two parameters: inhibition of the respiratory characteristics measured in vitro and diminution of mitochondrial protein in cyclosporine-treated rats.  相似文献   

12.
This paper reviews top-down elasticity analysis, which is a subset of metabolic control analysis. Top-down elasticity analysis provides a systematic yet simple experimental method to identify all the primary sites of action of an effector in complex systems and to distinguish them from all the secondary, indirect, sites of action. In the top-down approach, the complex system (for example, a mitochondrion, cell, organ or organism) is first conceptually divided into a small number of blocks of reactions interconnected by one or more metabolic intermediates. By changing the concentration of one intermediate when all others are held constant and measuring the fluxes through each block of reactions, the overall kinetic response of each block to each intermediate can be established. The concentrations of intermediates can be changed by adding new branches to the system or by manipulating the activities of blocks of reactions whose kinetics are not under investigation. To determine how much an effector alters the overall kinetics of a block of reactions, the overall kinetic response of the block to the intermediate is remeasured in the presence of the effector. Blocks that contain significant primary sites of action will display altered kinetics; blocks that change rate only because of secondary alterations in the concentrations of other metabolites will not. If desired, this elasticity analysis can be repeated with the primary target blocks subdivided into simpler blocks so that the primary sites of action can be defined with more and more precision until, with sufficient subdivision, they are mapped onto individual kinetic steps. Top-down elasticity analysis has been used to identify the targets of effectors of oxygen consumption in mitochondria, hepatocytes and thymocytes. Effectors include poisons such as cadmium and hormones such as tri-iodothyronine. However, the method is more general than this; in principle it can be applied to any metabolic or other steady-state system.  相似文献   

13.
Regulation of mitochondrial functions in vivo by catecholamines was examined indirectly by depleting the catecholamines stores by reserpine treatments of the experimental animals. Reserpine treatment resulted in decreased respiratory activity in liver and brain mitochondria with the two NAD+-linked substrates: glutamate and pyruvate + malate with succinate ATP synthesis rate decreased in liver mitochondria only. With ascorbate + TMPD system, the ADP/O ratio and ADP phosphorylation rate decreased in brain mitochondria. For the heart mitochondria, state 3 respiration rates decreased for all substrates. In the liver mitochondria basal ATPase activity decreased by 51%, but in the presence of Mg2+ and/or DNP increased significantly. In the brain and heart mitochondria ATPase activities were unchanged. The energy of activation in high temperature range increased liver mitochondrial ATPase while in brain mitochondria reserpine treatment resulted in abolishment in phase transition. Total phospholipid (TPL) content of the brain mitochondria increased by 22%. For the heart mitochondria TPL content decreased by 19% and CHL content decreased by 34%. Tissue specific differential effects were observed for the mitochondrial phospholipid composition. Liver mitochondrial membranes were more fluidized in the reserpine-treated group. The epinephrine and norepinephrine contents in the adrenals decreased by 68 and 77% after reserpine treatment.  相似文献   

14.
目的和方法:以C57BL/6J雄性小鼠跑转笼为运动方式,研究以5月龄开始进行为期8个月或15个月的运动训练对小鼠心肌线粒体能量转换功能的影响。结果:以α-酮戊二酸为底物时,线粒体RCR、ADP/O均呈现随年龄的增加而下降,尤其以衰老晚期(小鼠20月龄)下降明显。结论:衰老过程中氧化磷酸化偶联程度降低,能量产出减少,长期运动训练的小鼠心肌线粒体出现适应性变化,表现为线粒体功能随增龄而下降的程度减小。  相似文献   

15.
The metabolic pathways involved in ATP production in hypertriglyceridemic rat hearts were evaluated. Hearts from male Wistar rats with sugar-induced hypertriglyceridemia were perfused in an isolated organ system. Mechanical performance, oxygen uptake and beat rate were evaluated under perfusion with different oxidizable substrates. Age- and weight-matched animals were used as control. The hypertriglyceridemic (HTG) hearts showed a decrease in the mechanical work and slight diminution in the oxygen uptake when perfused with glucose, pyruvate or lactate. No differences were found when perfused with palmitate, octanoate or -hydroxybutyrate. The glycolytic flux in HTG hearts was 2.4 times lower than in control hearts. Phosphofructokinase-I (PFK-I) was 16% decreased in HTG hearts, whereas pyruvate kinase activity did not change. The increased levels of glucose-6hyphen;phosphate in HTG heart, suggested a flux limitation by the PFK-I. Pyruvate dehydrogenase in its active form (PDHa) diminished as well. The PDHa level in the HTG hearts was restored to control values by dichloroacetate; however, this addition did not significantly improve the mechanical performance. Levels of ATP and phosphocreatine as well as total creatine kinase activity and the MB fraction were significant lower in the HTG hearts perfused with glucose. The data suggested that supply of ATP by glucose oxidation did not suffice to support cardiac work in the HTG hearts; this impairment was exacerbated by the diminution of the creatine kinase system output.  相似文献   

16.
Increasing evidence shows that the overproduction of reactive oxygen species, induced by diabetic hyperglycemia, contributes to the development of several cardiopathologies. The susceptibility of diabetic hearts to oxidative stress, induced in vitro by ADP-Fe2+ in mitochondria, was studied in 12-month-old Goto-Kakizaki rats, a model of non-insulin dependent diabetes mellitus, and normal (non-diabetic) Wistar rats. In terms of lipid peroxidation the oxidative damage was evaluated on heart mitochondria by measuring both the O2 consumption and the concentrations of thiobarbituric acid reactive substances. Diabetic rats display a more intense formation of thiobarbituric acid reactive substances and a higher O2 consumption than non-diabetic rats. The oxidative damage, assessed by electron microscopy, was followed by an extensive effect on the volume of diabetic heart mitochondria, as compared with control heart mitochondria. An increase in the susceptibility of diabetic heart mitochondria to oxidative stress can be explained by reduced levels of endogenous antioxidants, so we proceeded in determinating -tocopherol, GSH and coenzyme Q content. Although no difference of -tocopherol levels was found in diabetic rats as compared with control rat mitochondria, a significant reduction in GSH (21.5% reduction in diabetic rats) and coenzyme Q levels of diabetic rats was observed. The data suggest that a significant decrease of coenzyme Q9, a potent antioxidant involved in the elimination of mitochondria-generated reactive oxygen species, may be responsible for an increased susceptibility of diabetic heart mitochondria to oxidative damage.  相似文献   

17.
The influence of Adriamycin (doxorubicin) on the rate of superoxide radical formation in isolated rat heart mitochondria was studied by EPR with the Tiron spin trap not penetrating the mitochondrial inner membrane. Adriamycin at 10–150 μM considerably enhanced superoxide generation in the presence of succinate (substrate of the respiratory chain complex II) and glutamate/malate (complex I substrate) when electron transfer was blocked in complex III with antimycin A. Such effects may partly account for the known cardiotoxicity of this antitumor drug.  相似文献   

18.
Summary The uptake of deoxyguanosine by rat liver mitochondria was characterized. The process required an intact mitochondrial membrane and exhibited a dependence on added phosphate. Deoxyguanosine uptake was minimally influenced by Mg2+ or Mn2+, but Ca2+ at concentrations above 0.5 mM were detrimental. Of the deoxynucleosides tested, only deoxyinosine inhibited the uptake of deoxyguanosine. The ribonucleoside guanosine was not observed to compete with its deoxynucleoside analog. Known inhibitors of nucleoside transport, cytochalasin B and NBMPR, did not block deoxyguanosine uptake, but the sulfhydryl reagents NEM and pCMB were both inhibitory. The uptake of deoxyguanosine was shown to be a saturable process and an apparent Km of 0.64 M was calculated from a Hanes plot.  相似文献   

19.
Summary We described that oxygen deprivation induced in cultures of heart muscle cells, biochemical events similar to those described in ischemic tissue: arachidonic acid liberation, loss of membrane phospholipids and increase in neutral lipids. Since glucocorticoids have been described to inhibit phospholipase activity and to exert beneficial effects during myocardial infarction, we studied in our experimental model the action of dexamethasone on the metabolism of arachidonic acid and on the synthesis of immunoreactive prostaglandins. Our results show that heart muscle cells produce prostaglandin E2 and 6-keto-prostaglandin-F1. This synthesis, inhibited by dexamethasone (70% inhibition), decreased after oxygen-deprivation (–45%). The effect of oxygen deprivation and dexamethasone (–60%) are not additive. Moreover, steroid treatment failed to counteract the loss of polyunsaturated fatty acids from the phospholipids, the increase in neutral lipids and the liberation of arachidonic acid induced by oxygen deprivation in muscle cells. These results may indicate that the cardiovascular effects of glucosteroids are not the consequence of a direct effect on heart metabolism at cellular level.  相似文献   

20.
Summary The utilization of D-3-HB and the production of acetoacetate by the perfused rat heart were investigated over a wide range of DL-3-HB concentrations. The rate of D-3-HB utilization is concentration dependent, and shows saturation kinetics. The oxidized amount of D-3-HB when D-3-HB as a sole substrate, accounts at a maximum for 50% of the total oxygen consumption, which suggest the contribution of the endogenous substrate as fuel source along with D-3-HB. The proportion of the D-3-HB consumed that is oxidized rather than released as acetoacetate increases from 70% to 93% as the concentration of D-3-HB falls from 6.99 mM to 0.30 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号