首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The molecular chaperones GroEL and GroES facilitate protein folding in an ATP-dependent manner under conditions where no spontaneous folding occurs. It has remained unknown whether GroE achieves this by a passive sequestration of protein inside the GroE cavity or by changing the folding pathway of a protein. Here we used citrate synthase, a well studied model substrate, to discriminate between these possibilities. We demonstrate that GroE maintains unfolding intermediates in a state that allows productive folding under nonpermissive conditions. During encapsulation of non-native protein inside GroEL.GroES complexes, a folding reaction takes place, generating association-competent monomeric intermediates that are no longer recognized by GroEL. Thus, GroE shifts folding intermediates to a productive folding pathway under heat shock conditions where even the native protein unfolds in the absence of GroE.  相似文献   

2.
Review: a structural view of the GroE chaperone cycle   总被引:3,自引:0,他引:3  
The GroE chaperone system consists of two ring-shaped oligomeric components whose association creates different functional states. The most remarkable property of the GroE system is the ability to fold proteins under conditions where spontaneous folding cannot occur. To achieve this, a fully functional system consisting of GroEL, the cochaperone GroES, and ATP is necessary. Driven by ATP binding and hydrolysis, this system cycles through different conformational stages, which allow binding, folding, and release of substrate proteins. Some aspects of the ATP-driven reaction cycle are still under debate. One of these open questions is the importance of so-called "football" complexes consisting of GroEL and two bound GroES rings. Here, we summarize the evidence for the functional relevance of these complexes and their involvement in the efficient folding of substrate proteins.  相似文献   

3.
The commonly accepted dogma of the bacterial GroE chaperonin system entails protein folding mediated by cycles of several ATP-dependent sequential steps where GroEL interacts with the folding client protein. In contrast, we herein report GroES-mediated dynamic remodeling (expansion and compression) of two different protein substrates during folding: the endogenous substrate MreB and carbonic anhydrase (HCAII), a well-characterized protein folding model. GroES was also found to influence GroEL binding induced unfolding and compression of the client protein underlining the synergistic activity of both chaperonins, even in the absence of ATP. This previously unidentified activity by GroES should have important implications for understanding the chaperonin mechanism and cellular stress response. Our findings necessitate a revision of the GroEL/ES mechanism.  相似文献   

4.
The GroEL–GroES is an essential molecular chaperon system that assists protein folding in cell. Binding of various substrate proteins to GroEL is one of the key aspects in GroEL‐assisted protein folding. Small peptides may mimic segments of the substrate proteins in contact with GroEL and allow detailed structural analysis of the interactions. A model peptide SBP has been shown to bind to a region in GroEL that is important for binding of substrate proteins. Here, we investigated whether the observed GroEL–SBP interaction represented those of GroEL–substrate proteins, and whether SBP was able to mimic various aspects of substrate proteins in GroE‐assisted protein folding cycle. We found that SBP competed with substrate proteins, including α‐lactalbumin, rhodanese, and malate dehydrogenase, in binding to GroEL. SBP stimulated GroEL ATP hydrolysis rate in a manner similar to that of α‐lactalbumin. SBP did not prevent GroES from binding to GroEL, and GroES association reduced the ATPase rates of GroEL/SBP and GroEL/α‐lactalbumin to a comparable extent. Binding of both SBP and α‐lactalbumin to apo GroEL was dominated by hydrophobic interaction. Interestingly, association of α‐lactalbumin to GroEL/GroES was thermodynamically distinct from that to GroEL with reduced affinity and decreased contribution from hydrophobic interaction. However, SBP did not display such differential binding behaviors to apo GroEL and GroEL/GroES, likely due to the lack of a contiguous polypeptide chain that links all of the bound peptide fragments. Nevertheless, studies using peptides provide valuable information on the nature of GroEL–substrate protein interaction, which is central to understand the mechanism of GroEL‐assisted protein folding. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
M K Hayer-Hartl  F Weber    F U Hartl 《The EMBO journal》1996,15(22):6111-6121
As a basic principle, assisted protein folding by GroEL has been proposed to involve the disruption of misfolded protein structures through ATP hydrolysis and interaction with the cofactor GroES. Here, we describe chaperonin subreactions that prompt a re-examination of this view. We find that GroEL-bound substrate polypeptide can induce GroES cycling on and off GroEL in the presence of ADP. This mechanism promotes efficient folding of the model protein rhodanese, although at a slower rate than in the presence of ATP. Folding occurs when GroES displaces the bound protein into the sequestered volume of the GroEL cavity. Resulting native protein leaves GroEL upon GroES release. A single-ring variant of GroEL is also fully functional in supporting this reaction cycle. We conclude that neither the energy of ATP hydrolysis nor the allosteric coupling of the two GroEL rings is directly required for GroEL/GroES-mediated protein folding. The minimal mechanism of the reaction is the binding and release of GroES to a polypeptide-containing ring of GroEL, thereby closing and opening the GroEL folding cage. The role of ATP hydrolysis is mainly to induce conformational changes in GroEL that result in GroES cycling at a physiologically relevant rate.  相似文献   

6.
The folding of many proteins depends on the assistance of chaperonins like GroEL and GroES and involves the enclosure of substrate proteins inside an internal cavity that is formed when GroES binds to GroEL in the presence of ATP. Precisely how assembly of the GroEL-GroES complex leads to substrate protein encapsulation and folding remains poorly understood. Here we use a chemically modified mutant of GroEL (EL43Py) to uncouple substrate protein encapsulation from release and folding. Although EL43Py correctly initiates a substrate protein encapsulation reaction, this mutant stalls in an intermediate allosteric state of the GroEL ring, which is essential for both GroES binding and the forced unfolding of the substrate protein. This intermediate conformation of the GroEL ring possesses simultaneously high affinity for both GroES and non-native substrate protein, thus preventing escape of the substrate protein while GroES binding and substrate protein compaction takes place. Strikingly, assembly of the folding-active GroEL-GroES complex appears to involve a strategic delay in ATP hydrolysis that is coupled to disassembly of the old, ADP-bound GroEL-GroES complex on the opposite ring.  相似文献   

7.
GroE facilitates refolding of citrate synthase by suppressing aggregation.   总被引:21,自引:0,他引:21  
The molecular chaperone GroE facilitates correct protein folding in vivo and in vitro. The mode of action of GroE was investigated by using refolding of citrate synthase as a model system. In vitro denaturation of this dimeric protein is almost irreversible, since the refolding polypeptide chains aggregate rapidly, as shown directly by a strong, concentration-dependent increase in light scattering. The yields of reactivated citrate synthase were strongly increased upon addition of GroE and MgATP. GroE inhibits aggregation reactions that compete with correct protein folding, as indicated by specific suppression of light scattering. GroEL rapidly forms a complex with unfolded or partially folded citrate synthase molecules. In this complex the refolding protein is protected from aggregation. Addition of GroES and ATP hydrolysis is required to release the polypeptide chain bound to GroEL and to allow further folding to its final, active state.  相似文献   

8.
The mechanism of assisted protein folding by the chaperonin GroEL alone or in complex with the co-chaperonin GroES and in the presence or absence of nucleotides has been subject to extensive investigations during the last years. In this paper we present data where we have inactivated GroEL by stepwise blocking the nucleotide binding sites using the non-hydrolyzable ATP analogue, (Cr(H2O)4)3+ATP. We correlated the amount of accessible nucleotide binding sites with the residual ATP hydrolysis activity of GroEL as well as the residual refolding activity for two different model substrates. Under the conditions used, folding of the substrate proteins and ATP hydrolysis were directly proportional to the residual, accessible nucleotide binding sites. In the presence of GroES, 50% of the nucleotide binding sites were protected from inactivation by CrATP and the resulting protein retains 50% of both ATPase and refolding activity. The results strongly suggest that under the conditions used in our experiments, the nucleotide binding sites are additive in character and that by blocking of a certain number of binding sites a proportional amount of ATP hydrolysis and refolding activities are inactivated. The experiments including GroES suggest that full catalytic activity of GroEL requires both rings of the chaperonin. Blocking of the nucleotide binding sites of one ring still allows function of the second ring.  相似文献   

9.
GroEL is an Escherichia coli chaperonin that is composed of two heptameric rings stacked back-to-back. GroEL assists protein folding with its cochaperonin GroES in an ATP-dependent manner in vitro and in vivo. However, it is still unclear whether GroES binds to both rings of GroEL simultaneously under physiological conditions. In this study, we monitored the GroEL-GroES interaction in the reaction cycle using fluorescence resonance energy transfer. We found that nearly equivalent amounts of symmetric GroEL-(GroES)(2) (football-shaped) complex and asymmetric GroEL-GroES (bullet-shaped) complex coexist during the functional reaction cycle. We also found that D398A, an ATP hydrolysis defective mutant of GroEL, forms a football-shaped complex with ATP bound to the two rings. Furthermore, we showed that ADP prevents the association of ATP to the trans-ring of GroEL, and as a consequence, the second GroES cannot bind to GroEL. Considering the concentrations of ADP and ATP in E. coli, ADP is expected to have a small effect on the inhibition of GroES binding to the trans-ring of GroEL in vivo. These results suggest that we should reconsider the chaperonin-mediated protein-folding mechanism that involves the football-shaped complex.  相似文献   

10.
Preuss M  Miller AD 《FEBS letters》2000,466(1):75-79
The affinity of four short peptides for the Escherichia coli molecular chaperone GroEL was studied in the presence of the co-chaperone GroES and nucleotides. Our data show that binding of GroES to one ring enhances the interaction of the peptides with the opposite GroEL ring, a finding that was related to the structural readjustments in GroEL following GroES binding. We further report that the GroEL/GroES complex has a high affinity for peptides during ATP hydrolysis when protein substrates would undergo repeated cycles of assisted folding. Although we could not determine at which step(s) during the cycle our peptides interacted with GroEL, we propose that successive state changes in GroEL during ATP hydrolysis may create high affinity complexes and ensure maximum efficiency of the chaperone machinery under conditions of protein folding.  相似文献   

11.
The chaperonin GroE (GroEL and the cochaperonin GroES) is the only chaperone system that is essential for the viability of Escherichia coli. It is known that GroE-depleted cells exhibit a filamentous morphology, suggesting that GroE is required for the folding of proteins involved in cell division. Although previous studies, including proteome-wide analyses of GroE substrates, have suggested several targets of GroE in cell division, there is no direct in vivo evidence to identify which substrates exhibit obligate dependence on GroE for folding. Among the candidate substrates, we found that prior excess production of FtsE, a protein engaged in cell division, completely suppressed the filamentation of GroE-depleted E. coli. The GroE depletion led to a drastic decrease in FtsE, and the cells exhibited a known phenotype associated with impaired FtsE function. In the GroE-depleted filamentous cells, the localizations of FtsA and ZipA, both of which assemble with the FtsZ septal ring before FtsE, were normal, whereas FtsX, the interaction partner of FtsE, and FtsQ, which is recruited after FtsE, did not localize to the ring, suggesting that the decrease in FtsE is a cause of the filamentous morphology. Finally, a reconstituted cell-free translation system revealed that the folding of newly translated FtsE was stringently dependent on GroEL/GroES. Based on these findings, we concluded that FtsE is a target substrate of the GroE system in E. coli cell division.  相似文献   

12.
In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.  相似文献   

13.
We have studied the effect of the components of the GroE molecular chaperone machine on the refolding of the Escherichia coli enzyme beta-galactosidase, a tetrameric protein whose 116-kDa promoters should not completely fit within the central cavity of the GroEL toroid. In the absence of other additives, GroEL formed a weak complex with chemically denatured beta-galactosidase, reduced its propensity to aggregate, and increased the recovery yields of active enzyme twofold without altering its folding pathway. When present together with the chaperonin, ATP--and to a lesser extent AMP-PNP--reduced the recovery yields and led to the resumption of aggregation. The use of the complete chaperonin system (GroEL, GroES, and ATP) eliminated the GroEL-mediated increase in recovery and folding proceeded less efficiently than in buffer alone. This unusual behavior can be explained in terms of a chaperonin "buffering" effect and the different affinities of GroE complexes for denatured beta-galactosidase.  相似文献   

14.
GroEL encapsulates nonnative substrate proteins in a central cavity capped by GroES, providing a safe folding cage. Conventional models assume that a single timer lasting approximately 8 s governs the ATP hydrolysis-driven GroEL chaperonin cycle. We examine single molecule imaging of GFP folding within the cavity, binding release dynamics of GroEL-GroES, ensemble measurements of GroEL/substrate FRET, and the initial kinetics of GroEL ATPase activity. We conclude that the cycle consists of two successive timers of approximately 3 s and approximately 5 s duration. During the first timer, GroEL is bound to ATP, substrate protein, and GroES. When the first timer ends, the substrate protein is released into the central cavity and folding begins. ATP hydrolysis and phosphate release immediately follow this transition. ADP, GroES, and substrate depart GroEL after the second timer is complete. This mechanism explains how GroES binding to a GroEL-substrate complex encapsulates the substrate rather than allowing it to escape into solution.  相似文献   

15.
The refolding of the tetrameric enzyme tryptophanase was facilitated by the chaperonin GroE. Maximum refolding yield of tryptophanase molecules (about 80%) was attained in the presence of a 15-fold excess of GroE 21-mer over tryptophanase monomer. The GroEL subunit was required for this improvement in refolding yield, whereas the GroES subunit was not. Light scattering experiments of the refolding reaction revealed that GroE bound to tryptophanase folding intermediates and suppressed their aggregation. The presence of ATP was required for the efficient dissociation of tryptophanase from GroEL. However, our experiments indicated that tryptophanase dissociated readily from GroEL in the presence of not only ATP, but also in the presence of non-hydrolyzable ATP analogues such as ATP gamma S (adenosine 5'-O-(3-thiotriphosphate)) and AMP-PNP (adenyl-5'-yl imidodiphosphate) as well. Surprisingly, the release of tryptophanase from GroEL was facilitated in the presence of ADP as well. We concluded that the binding of nucleotides such as ATP and ADP changed the conformation of GroEL and facilitated the dissociation of tryptophanase molecules. The conformation formed in the presence of ADP was distinct from the conformation formed in the presence of ATP, as shown by the selective dissociation of various folding proteins from the two conformations.  相似文献   

16.
In Escherichia coli cells expressing 6-hydroxy-D-nicotine oxidase (6-HDNO), a flavoprotein with covalently bound FAD, approximately 40% of the polypeptide is in its apoform. We investigated whether in vivo holoenzyme formation was influenced by the association of the apoenzyme with cellular chaperones. Immunoprecipitation of apoenzyme-containing cell extract with protein-A-Sepharose-bound 6-HDNO- or GroEL-specific antibodies failed to reveal the formation of complexes between these proteins. The limiting factor in holoenzyme formation in vivo appeared to be the intracellular supply of phosphorylated tricarbon compounds (e.g. glycerol-3-P) acting as allosteric effectors in the flavinylation reaction. When holoenzyme formation from purified apo6-HDNO was investigated in vitro, addition of GroEL and GroES to the reaction assays increased the yield of holoenzyme formation. The observed increase in apoenzyme to holoenzyme transition was ATP independent, and the effect of GroE could be simulated by high concentrations of glycerol (40%). Apparently, a nonspecific protein-protein interaction between the GroE proteins and the apo6-HDNO favored holoenzyme formation. The refolding of guanidinium hydrochloride-unfolded holoenzyme, however, was catalyzed by GroEL and GroES in an ATP-dependent reaction. Recovery of the native, enzymatically active, conformation ranged from 30 to 40%. When apo6-HDNO was denatured and refolded, the same dependence on GroE and ATP was observed in the recovery of a conformation able to incorporate FAD and to holoenzyme. [14C] FAD in the refolding assay yielded radioactively labeled 6-HDNO demonstrating the autocatalytical covalent incorporation of FAD into the polypeptide during the folding process.  相似文献   

17.
Escherichia coli malate dehydrogenase (EcMDH) and its eukaryotic counterpart, porcine mitochondrial malate dehydrogenase (PmMDH), are highly homologous proteins with significant sequence identity (60%) and virtually identical native structural folds. Despite this homology, EcMDH folds rapidly and efficiently in vitro and does not seem to interact with GroE chaperonins at physiological temperatures (37 degrees C), whereas PmMDH folds much slower than EcMDH and requires these chaperonins to fold to the native state at 37 degrees C. Double jump experiments indicate that the slow folding behavior of PmMDH is not limited by proline isomerization. Although the folding enhancer glycerol (<5 m) does not alter the renaturation kinetics of EcMDH, it dramatically accelerates the spontaneous renaturation of PmMDH at all temperatures tested. Kinetic analysis of PmMDH renaturation with increasing glycerol concentrations suggests that this osmolyte increases the on-pathway kinetics of the monomer folding to assembly-competent forms. Other osmolytes such as trimethylamine N-oxide, sucrose, and betaine also reactivate PmMDH at nonpermissive temperatures (37 degrees C). Glycerol jump experiments with preformed GroEL.PmMDH complexes indicate that the shift between stringent (requires ATP and GroES) and relaxed (only requires ATP) complex conformations is rapid (<3-5 s). The similarity in irreversible misfolding kinetics of PmMDH measured with glycerol or the activated chaperonin complex (GroEL.GroES.ATP) suggests that these folding aids may influence the same step in the PmMDH folding reaction. Moreover, the interactions between glycerol-induced PmMDH folding intermediates and GroEL.GroES.ATP are diminished. Our results support the notion that the protein folding kinetics of sequentially and structurally homologous proteins, rather than the structural fold, dictates the GroE chaperonin requirement.  相似文献   

18.
Coupling with ATP hydrolysis and cooperating with GroES, the double ring chaperonin GroEL assists the folding of other proteins. Here we report novel GroEL-GroES complexes formed in fluoroberyllate (BeF(x)) that can mimic the phosphate part of the enzyme-bound nucleotides. In ATP, BeF(x) stops the functional turnover of GroEL by preventing GroES release and produces a symmetric 1:2 GroEL-GroES complex in which both GroEL rings contain ADP.BeF(x) and an encapsulated substrate protein. In ADP, the substrate protein-loaded GroEL cannot bind GroES. In ADP plus BeF(x), however, it can bind GroES to form a stable 1:1 GroEL-GroES complex in which one of GroEL rings contains ADP.BeF(x) and an encapsulated substrate protein. This 1:1 GroEL-GroES complex is converted into the symmetric 1:2 GroEL-GroES complex when GroES is supplied in ATP plus BeF(x). Thus, BeF(x) stabilizes two GroEL-GroES complexes; one with a single folding chamber and the other with double folding chambers. These results shed light on the intermediate ADP.P(i) nucleotide states in the functional cycle of GroEL.  相似文献   

19.
The GroEL/GroES chaperonin system of Escherichia coli forms a nano-cage allowing single protein molecules to fold in isolation. However, as the chaperonin can also mediate folding independently of substrate encapsulation, it remained unclear whether the folding cage is essential in vivo. To address this question, we replaced wild-type GroEL with mutants of GroEL having either a reduced cage volume or altered charge properties of the cage wall. A stepwise reduction in cage size resulted in a gradual loss of cell viability, although the mutants bound non-native protein efficiently. Strikingly, a mild reduction in cage size increased the yield and the apparent rate of green fluorescent protein folding, consistent with the view that an effect of steric confinement can accelerate folding. As shown in vitro, the observed acceleration of folding was dependent on protein encapsulation by GroES but independent of GroES cycling regulated by the GroEL ATPase. Altering the net-negative charge of the GroEL cage wall also strongly affected chaperonin function. Based on these findings, the GroEL/GroES compartment is essential for protein folding in vivo.  相似文献   

20.
We present high-resolution atomic force microscopy (AFM) imaging of the single-ring mutant of the chaperonin GroEL (SR-EL) from Escherichia coli in buffer solution. The native GroEL is generally unsuitable for AFM scanning as it is easily being bisected by forces exerted by the AFM tip. The single-ring mutant of GroEL with its simplified composition, but unaltered capability of binding substrates and the co-chaperone GroES, is a more suited system for AFM studies. We worked out a scheme to systematically investigate both the apical and the equatorial faces of SR-EL, as it binds in a preferred orientation to hydrophilic mica and hydrophobic highly ordered pyrolytic graphite. High-resolution topographical imaging and the interaction of the co-chaperone GroES were used to assign the orientations of SR-EL in comparison with the physically bisected GroEL. The usage of SR-EL facilitates single molecule studies on the folding cycle of the GroE system using AFM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号