首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Upon infection of a bacterial cell, the temperate bacteriophage lambda executes a regulated temporal program with two possible outcomes: (1) Cell lysis and virion production or (2) establishment of a dormant state, lysogeny, in which the phage genome (prophage) is integrated into the host chromosome. The prophage is replicated passively as part of the host chromosome until it is induced to resume the lytic cycle. In this review, we summarize the evidence that implicates every known ATP-dependent protease in the regulation of specific steps in the phage life cycle. The proteolysis of specific regulatory proteins appears to fine-tune phage gene expression. The bacteriophage utilizes multiple proteases to irreversibly inactivate specific regulators resulting in a temporally regulated program of gene expression. Evolutionary forces may have favored the utilization of overlapping protease specificities for differential proteolysis of phage regulators according to different phage life styles.  相似文献   

4.
The canonical lytic–lysogenic binary has been challenged in recent years, as more evidence has emerged on alternative bacteriophage infection strategies. These infection modes are little studied, and yet they appear to be more abundant and ubiquitous in nature than previously recognized, and can play a significant role in the ecology and evolution of their bacterial hosts. In this review, we discuss the extent, causes and consequences of alternative phage lifestyles, and clarify conceptual and terminological confusion to facilitate research progress. We propose distinct definitions for the terms ‘pseudolysogeny’ and ‘productive or non-productive chronic infection’, and distinguish them from the carrier state life cycle, which describes a population-level phenomenon. Our review also finds that phages may change their infection modes in response to environmental conditions or the physiological state of the host cell. We outline known molecular mechanisms underlying the alternative phage–host interactions, including specific genetic pathways and their considerable biotechnological potential. Moreover, we discuss potential implications of the alternative phage lifestyles for microbial biology and ecosystem functioning, as well as applied topics such as phage therapy.  相似文献   

5.
Summary: Bacteriophages belonging to the order Caudovirales possess a tail acting as a molecular nanomachine used during infection to recognize the host cell wall, attach to it, pierce it, and ensure the high-efficiency delivery of the genomic DNA to the host cytoplasm. In this review, we provide a comprehensive analysis of the various proteins constituting tailed bacteriophages from a structural viewpoint. To this end, we had in mind to pinpoint the resemblances within and between functional modules such as capsid/tail connectors, the tails themselves, or the tail distal host recognition devices, termed baseplates. This comparison has been extended to bacterial machineries embedded in the cell wall, for which shared molecular homology with phages has been recently revealed. This is the case for the type VI secretion system (T6SS), an inverted phage tail at the bacterial surface, or bacteriocins. Gathering all these data, we propose that a unique ancestral protein fold may have given rise to a large number of bacteriophage modules as well as to some related bacterial machinery components.  相似文献   

6.
Many bacteriophages carry virulence genes encoding proteins that play a major role in bacterial pathogenesis. Recently, investigators have identified bacteriophage-bacteriophage interactions in the bacterial host cell that also contribute significantly to the virulence of bacterial pathogens. The relationships between the bacteriophages pertain to one bacteriophage providing a helper function for another, unrelated bacteriophage in the host cell. Accordingly, these interactions can involve the mobilization of bacteriophage DNA by another bacteriophage, for example in Escherichia coli, Vibrio coli and Staphylococcus aureus; the host receptor for one bacteriophage being encoded by another, as found in V. cholerae; and the presence of one bacteriophage potentiating the virulence properties of another bacteriophage, as found in V. cholerae and Salmonella enterica.  相似文献   

7.
8.
The strain-specific capsular polysaccharide KR5 antigen of Sinorhizobium meliloti 41 is required both for invasion of the symbiotic nodule and for the adsorption of bacteriophage 16-3. In order to know more about the genes involved in these events, bacterial mutants carrying an altered phage receptor were identified by using host range phage mutants. A representative mutation was localized in the rkpM gene by complementation and DNA sequence analysis. A host range phage mutant isolated on these phage-resistant bacteria was used to identify the h gene, which is likely to encode the tail fiber protein of phage 16-3. The nucleotide sequences of the h gene as well as a host range mutant allele were also established. In both the bacterial and phage mutant alleles, a missense mutation was found, indicating a direct contact between the RkpM and H proteins in the course of phage adsorption. Some mutations could not be localized in these genes, suggesting that additional components are also important for bacteriophage receptor recognition.  相似文献   

9.
Filamentous bacteriophage assemble at the host membrane in a non-lytic process; the gene-3 minor coat protein (P3) is required for release from the membrane and subsequently, for recognition and infection of a new host. P3 contains at least three distinct domains: two N-terminal domains that mediate host recognition and infection, and a C-terminal domain (P3-C) that is required for release from the host cell following phage assembly and contributes to the structural stability of the phage particle. A comprehensive mutational analysis of the 150 residue P3-C revealed that only 24 side-chains, located within the last 70 residues of sequence, were necessary for efficient incorporation into a wild-type coat. The results reveal that the requirements for the assembly of P3 into the phage particle are quite lax and involve only a few key side-chains. These findings shed light on the functional and structural requirements for filamentous phage assembly, and they may provide guidelines for the engineering of improved coat proteins as scaffolds for phage display technology.  相似文献   

10.
Incorporation of numerous copies of a heterologous protein (bovine pancreatic trypsin inhibitor; BPTI) fused to the mature major coat protein (gene VIII product; VIII) of bacteriophage M13 has been demonstrated. Optimization of the promoter, signal peptide and host bacterial strain allowed for the construction of a working vector consisting of the M13 genome, into which was cloned a synthetic gene composed of a lac (or tac) promoter, and sequences encoding the bacterial alkaline phosphatase signal peptide, mature BPTI and the mature coat protein. Processing of the BPTI-VIII fusion protein and its incorporation into the bacteriophage were found to be maximal in a host bacterial strain containing a prlA/secY mutation. Functional protein is displayed on the surface of M13 phage, as judged by specific interactions with antiserum, anhydrotrypsin, and trypsin. Such display vectors can be used for epitope mapping, production of artificial vaccines and the screening of diverse libraries of proteins or peptides having affinity for a chosen ligand. The VIII display phage system has practical advantages over the III display phage system in that many more copies of the fusion protein can be displayed per phage particle and the presence of the VII fusion protein has little or no effect on the infectivity of the resulting bacteriophage.  相似文献   

11.
Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents.  相似文献   

12.
Bacteriophage Mu is a double-stranded DNA phage that consists of an icosahedral head, a contractile tail with baseplate and six tail fibers, similar to the well-studied T-even phages. The baseplate of bacteriophage Mu, which recognizes and attaches to a host cell during infection, consists of at least eight different proteins. The baseplate protein, gp44, is essential for bacteriophage Mu assembly and the generation of viable phages. To investigate the role of gp44 in baseplate assembly and infection, the crystal structure of gp44 was determined at 2.1A resolution by the multiple isomorphous replacement method. The overall structure of the gp44 trimer is similar to that of the T4 phage gp27 trimer, which forms the central hub of the T4 baseplate, although these proteins share very little primary sequence homology. Based on these data, we confirm that gp44 exists as a trimer exhibiting a hub-like structure with an inner diameter of 25A through which DNA can presumably pass during infection. The molecular surface of the gp44 trimer that abuts the host cell membrane is positively charged, and it is likely that Mu phage interacts with the membrane through electrostatic interactions mediated by gp44.  相似文献   

13.
14.
During the past years, remarkable progress has been made in our understanding of the replication cycle of bacteriophage M13 and the molecular details that enable phage proteins to navigate in the complex environment of the host cell. With new developments in molecular membrane biology in combination with spectroscopic techniques, we are now in a position to ask how phages carry out this delicate process on a molecular level, and what sort of protein-lipid and protein-protein interactions are involved. In this review we will focus on the molecular details of the protein-protein and protein-lipid interactions of the major coat protein (gp8) that may play a role during the infection of Escherichia coli by bacteriophage M13.  相似文献   

15.
K Geider  C Hohmeyer  R Haas  T F Meyer 《Gene》1985,33(3):341-349
DNA cloning vectors were developed which utilize the replication origin (ori) of bacteriophage fd for their propagation. These vectors depend on the expression of viral gene 2 that was inserted into phage lambda, which in turn was integrated into the host genome. The constitutive expression of gene 2 in the host cells is sufficient for the propagation of at least 100 pfd plasmids per cell. In addition to the fd ori, the pfd vectors carry various antibiotic-resistance genes and unique restriction sites. Some of these vectors have no homologies to commonly used pBR plasmids or to lambda DNA. The nucleotide sequence of the vectors can be deduced from published sequences. Large DNA inserts can be stably propagated in pfd vectors; these are more stable than similar DNA fragments cloned in intact genomes of filamentous bacteriophage. Inclusion of phage sequences required for efficient phage packaging and infection with a helper phage resulted in formation of phage particles containing single-stranded plasmid genomes. Growth at 42 degrees C without selective pressure results in loss of pfd plasmids.  相似文献   

16.
The population interactions of Pseudomonas aeruginosa virulent bacteriophage phi mF81 with host bacterial cells were studied in dynamics under the conditions of continuous cultivation in the chemostat regime with glucose limitation. It was detected that a maintenance of the bacterium and its specific bacteriophage in the population was realized due to the successive appearance of bacterial mutants resistant to the phage and of phage mutants overcoming this resistance.  相似文献   

17.
18.
Endolysins are produced by (bacterio)phages to rapidly degrade the bacterial cell wall and release new viral particles. Despite sharing a common function, endolysins present in phages that infect a specific bacterial species can be highly diverse and vary in types, number, and organization of their catalytic and cell wall binding domains. While much is now known about the biochemistry of phage endolysins, far less is known about the implication of their diversity on phage–host adaptation and evolution. Using CRISPR-Cas9 genome editing, we could genetically exchange a subset of different endolysin genes into distinct lactococcal phage genomes. Regardless of the type and biochemical properties of these endolysins, fitness costs associated to their genetic exchange were marginal if both recipient and donor phages were infecting the same bacterial strain, but gradually increased when taking place between phage that infect different strains or bacterial species. From an evolutionary perspective, we observed that endolysins could be naturally exchanged by homologous recombination between phages coinfecting a same bacterial strain. Furthermore, phage endolysins could adapt to their new phage/host environment by acquiring adaptative mutations. These observations highlight the remarkable ability of phage lytic systems to recombine and adapt and, therefore, explain their large diversity and mosaicism. It also indicates that evolution should be considered to act on functional modules rather than on bacteriophages themselves. Furthermore, the extensive degree of evolvability observed for phage endolysins offers new perspectives for their engineering as antimicrobial agents.

Endolysins are produced by bacteriophages to degrade the host cell wall and release new particles, but the implications of their diversity on phage-host adaptation and evolution is unknown. This study uses CRISPR-Cas9 genome editing to reveal novel insights into bacteriophage endolysin diversity and phage-bacteria interactions as well as into endolysin adaptation towards a new bacterial host.  相似文献   

19.
It is becoming clear that in vivo phage DNA ejection is not a mere passive process. In most cases, both phage and host proteins seem to be involved in pulling at least part of the viral DNA inside the cell. The DNA ejection mechanism of Bacillus subtilis bacteriophage phi29 is a two-step process where the linear DNA penetrates the cell with a right-left polarity. In the first step approximately 65% of the DNA is pushed into the cell. In the second step, the remaining DNA is actively pulled into the cytoplasm. This step requires protein p17, which is encoded by the right-side early operon that is ejected during the first push step. The membrane protein p16.7, also encoded by the right-side early operon, is known to play an important role in membrane-associated phage DNA replication. In this work we show that, in addition, p16.7 is required for efficient execution of the second pull step of DNA ejection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号