首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect in hsk1-89 is indicated by accumulation of cut cells at 30 degrees C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling. hsk1-89 displays apparent defect in mitosis at 37 degrees C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those of rad21-K1 and are significantly enhanced in a hsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.  相似文献   

2.
Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1−/− chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1−/− cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3−/− DT40 cells. Rather, we observed an increased number of replication fibers in Chk1−/− cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1−/− cells are associated with the accumulation of aberrant replication fork structures.  相似文献   

3.
The Tetrahymena thermophila rDNA exists as a 21 kb palindromic minichromosome with two initiation sites for replication in each half palindrome. These sites localize to the imperfect, repeated 430 bp segments that include the nucleosome-free domains 1 and 2 (D1 and D2). To determine if the D1 and D2 segments act independently or in concert to control initiation, stable DNA transformation assays were performed. Single domain derivatives of the plasmid prD1 failed to support autonomous replication in Tetrahymena. Instead, such constructs propagated exclusively by integration into endogenous rDNA minichromosomes and displayed weak origin activity as detected by 2D gel electrophoresis. D1/D1 and D2/D2 derivatives also transformed Tetrahymena poorly, showing similar replication defects. Hence, the D1 and D2 segments are functionally non-redundant and cooperate rather than compete to control initiation. The observed replication defect was greatly reduced in a plasmid derivative that undergoes palindrome formation in Tetrahymena, suggesting that a compensatory mechanism overcomes this replication block. Finally, using a transient replication assay, we present evidence that phylogenetically-conserved type I elements directly regulate DNA replication. Taken together, our data support a model in which cooperative interactions between dispersed elements coordinately control the initiation of DNA replication.  相似文献   

4.
Highlights? An unstable MCM2-7 complex results in a loss of dormant origins in Mcm4Chaos3 cells ? A loss of dormant origins impairs stalled fork recovery in unchallenged S phase ? A loss of dormant origins increases replication intermediates in prophase ? Replication intermediates in M phase are a likely cause of chromosome instability  相似文献   

5.
The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4Cdt2) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.  相似文献   

6.
RMI1 is a member of an evolutionarily conserved complex composed of BLM and topoisomerase IIIα (TopoIIIα). This complex exhibits strand passage activity in vitro, which is likely important for DNA repair and DNA replication in vivo. The inactivation of RMI1 causes genome instability, including elevated levels of sister chromatid exchange and accelerated tumorigenesis. Using molecular combing to analyze DNA replication at the single-molecule level, we show that RMI1 is required to promote normal replication fork progression. The fork progression defect in RMI1-depleted cells is alleviated in cells lacking BLM, indicating that RMI1 functions downstream of BLM in promoting replication elongation. RMI1 localizes to subnuclear foci with BLM and TopoIIIα in response to replication stress. The proper localization of the complex requires a BLM-TopoIIIα-RMI1 interaction and is essential for RMI1 to promote recovery from replication stress. These findings reveal direct roles of RMI1 in DNA replication and the replication stress response, which could explain the molecular basis for its involvement in suppressing sister chromatid exchange and tumorigenesis.  相似文献   

7.
The double-pulse labeling technique for DNA fiber autoradiography was applied to epidermal cells from normal human skin and from human basal cell carcinoma (BCC). We aimed to measure the size and replication rate of the replication unit (RU) for both types of cell and to account, from these results, for our previous observation of a near doubling of S-phase duration in BCC, compared with normal skin. The mean RU size was 76 +/- 4 micron in BCC, not significantly different from the 68 +/- 6 micron value found in normal skin, so the mean of those two values (i.e., 72 micron), was used in further calculations. The rate of replication fork progression was 0.59 +/- 0.005 micron/min in the normal epidermis and 0.33 +/- 0.03 micron/min in BCC, corresponding to a replication time of the average RU equal to 61 min and 109 min, respectively. Thus, with an unchanged RU size in BCC, the observed 1.8-fold decrease in the rate of fork progression in the tumor can account entirely for our previous observation of a 1.8-fold increase in S-phase duration in this tumor, without requiring the assumption of any change in the temporal organization of DNA synthesis in the malignant cells. Considering S phase as an ordered process in which a major part, if not all, of the genome replicates at genetically determined times, we suggest that the clusters of replication units are, in turn, organized into temporally defined "sets". These sets are composed of all the clusters (whatever their chromosomal location) that are programmed to initiate replication during the same fraction of the S period. This hypothesis implies that DNA synthesis in a given set is triggered by some event coupled to progression of replication in the immediately preceding set. Based on a S-phase duration of 10.2 hours in normal skin and of 19.2 hours in BCC (our previous data), and assuming perfect synchrony and homogeneity of the clusters within each set and of each cluster's constitutive RUs, the minimum number of sequentially replicating sets, in both instances, can be estimated as roughly equal to 10.  相似文献   

8.
The Mrc1 and Tof1 proteins are conserved throughout evolution, and in budding yeast they are known to associate with the MCM helicase and regulate the progression of DNA replication forks. Previous work has shown that Mrc1 is important for the activation of checkpoint kinases in responses to defects in S phase, but both Mrc1 and Tof1 also regulate the normal process of chromosome replication. Here, we show that these two important factors control the normal progression of DNA replication forks in distinct ways. The rate of progression of DNA replication forks is greatly reduced in the absence of Mrc1 but much less affected by loss of Tof1. In contrast, Tof1 is critical for DNA replication forks to pause at diverse chromosomal sites where nonnucleosomal proteins bind very tightly to DNA, and this role is not shared with Mrc1.  相似文献   

9.
To investigate the influence of the ribosomal DNA enhancer on initiation of replication and recombination at the ribosomal array, we used yeast S. cerevisiae strains with adjacent, tagged rRNA genes. We found that the enhancer is an absolute requirement for replication fork barrier function, while it only modulates initiation of replication. Moreover, the formation of monomeric extrachromosomal ribosomal circles depends on this element. Our data indicate that DNA double-strand breaks occur at specific sites in the parental leading arm of replication forks stalled at the replication fork barrier. Additionally, nicks upstream of the replication fork barrier were visualized by nucleotide-resolution mapping. They coincide with essential sequences of the mitotic hyperrecombination site HOT1, which previously has been determined at ectopic sites. Interestingly, these nicks are strictly dependent on the replication fork blocking-protein (Fob1), but are replication independent, suggesting that intrachromosomal ribosomal DNA recombination may occur outside of S phase.  相似文献   

10.
11.
Mrc1 associates with replication forks, where it transmits replication stress signals and is required for normal replisome pausing in response to nucleotide depletion. Mrc1 also plays a poorly understood role in DNA replication, which appears distinct from its role in checkpoint signaling. Here, we demonstrate that Mrc1 functions constitutively to promote normal replication fork progression. In mrc1Delta cells, replication forks proceed slowly throughout chromatin, rather than being specifically defective in pausing and progression through loci that impede fork progression. Analysis of genetic interactions with Rrm3, a DNA helicase required to resolve paused forks, indicates that Mrc1 checkpoint signaling is dispensable for the resolution of stalled replication forks and suggests that replication forks lacking Mrc1 create DNA damage that must be repaired by Rrm3. These findings elucidate a central role for Mrc1 in normal replisome function, which is distinct from its role as a checkpoint mediator, but nevertheless critical to genome stability.  相似文献   

12.
13.
cAMP exerts an antiproliferative effect on a number of cell types including lymphocytes. This effect of cAMP is proposed to be mediated by its ability to inhibit G1/S transition. In this report, we provide evidence for a new mechanism whereby cAMP might inhibit cellular proliferation. We show that elevation of intracellular levels of cAMP inhibits DNA replication and arrests the cells in S phase. The cAMP-induced inhibition of DNA synthesis was associated with the increased binding of p21Cip1 to Cdk2-cyclin complexes, inhibition of Cdk2 kinase activity, dephosphorylation of Rb, and dissociation of PCNA from chromatin in S phase cells. The ability of cAMP to inhibit DNA replication and trigger release of PCNA from chromatin required Rb and p21Cip1 proteins, since both processes were only marginally affected by increased levels of cAMP in Rb-/- and p21Cip1-/- 3T3 fibroblasts. Importantly, the implications of cAMP-induced inhibition of DNA synthesis in cancer treatment was demonstrated by the ability of cAMP to reduce apoptosis induced by S phase-specific cytotoxic drugs. Taken together, these results demonstrate a novel role for cAMP in regulation of DNA synthesis and support a model in which activation of cAMP-dependent signaling protects cells from the effect of S phase-specific antitumor agents.  相似文献   

14.
15.
A newly isolated Escherichia coli mutant thermosensitive in DNA synthesis had an allele named dnaR130, which was located at 26.3 minutes on the genetic map. The mutant was defective in initiation of chromosome replication but not in propagation at a high temperature. This mutant was capable of growing in the absence of the rnh function at the high temperature by means of a dnaA-independent replication mechanism. In the mutant exposed to the high temperature, an oriC plasmid was able to replicate, although at a lower rate than at the low temperature. The plasmid replication at the high temperature depended on the dnaA function essential for the initiation of replication from oriC. The mutant lacking the rnh function persistently maintained the oriC plasmid at the high temperature in a dnaA-dependent manner. Thus, the dnaR function was required for initiation of replication of the bacterial chromosome from oriC but not the oriC plasmid. This result reveals that a dnaR-dependent initiation mechanism that is dispensable for oriC plasmid replication operates in the bacterial chromosome replication.  相似文献   

16.
Escherichia coli minichromosomes harboring as little as 327 base pairs of DNA from the chromosomal origin of replication (oriC) were found to replicate in a discrete burst during the division cycle of cells growing with generation times between 25 and 60 min at 37 degrees C. The mean cell age at minichromosome replication coincided with the mean age at initiation of chromosome replication at all growth rates, and furthermore, the age distributions of the two events were indistinguishable. It is concluded that initiation of replication from oriC is controlled in the same manner on minichromosomes and chromosomes over the entire range of growth rates and that the timing mechanism acts within the minimal oriC nucleotide sequence required for replication.  相似文献   

17.
18.
Although the role of cyclins in controlling nuclear division is well established, their function in ciliate meiosis remains unknown. In ciliates, the cyclin family has undergone massive expansion which suggests that diverse cell cycle systems exist, and this warrants further investigation. A screen for cyclins in the model ciliate Tetrahymena thermophila showed that there are 34 cyclins in this organism. Only 1 cyclin, Cyc17, contains the complete cyclin core and is specifically expressed during meiosis. Deletion of CYC17 led to meiotic arrest at the diakinesis-like metaphase I stage. Expression of genes involved in DNA metabolism and chromosome organization (chromatin remodeling and basic chromosomal structure) was repressed in cyc17 knockout matings. Further investigation suggested that Cyc17 is involved in regulating spindle pole attachment, and is thus essential for chromosome segregation at meiosis. These findings suggest a simple model in which chromosome segregation is influenced by Cyc17.  相似文献   

19.
Brd4 belongs to the BET family of nuclear proteins that carry two bromodomains implicated in the interaction with chromatin. Expression of Brd4 correlates with cell growth and is induced during early G(1) upon mitogenic stimuli. In the present study, we investigated the role of Brd4 in cell growth regulation. We found that ectopic expression of Brd4 in NIH 3T3 and HeLa cells inhibits cell cycle progression from G(1) to S. Coimmunoprecipitation experiments showed that endogenous and transfected Brd4 interacts with replication factor C (RFC), the conserved five-subunit complex essential for DNA replication. In vitro analysis showed that Brd4 binds directly to the largest subunit, RFC-140, thereby interacting with the entire RFC. In line with the inhibitory activity seen in vivo, recombinant Brd4 inhibited RFC-dependent DNA elongation reactions in vitro. Analysis of Brd4 deletion mutants indicated that both the interaction with RFC-140 and the inhibition of entry into S phase are dependent on the second bromodomain of Brd4. Lastly, supporting the functional importance of this interaction, it was found that cotransfection with RFC-140 reduced the growth-inhibitory effect of Brd4. Taken as a whole, the present study suggests that Brd4 regulates cell cycle progression in part by interacting with RFC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号