首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of chylomicron metabolism have been studied by measuring retinyl palmitate in chylomicrons and their remnants for 10-12 hr following oral administration of vitamin A and Lipomul in three groups of adult male subjects: A) normal plasma triglyceride levels (n = 7); B) endogenous hypertriglyceridemia (n = 12); C) apolipoprotein E (apoE) phenotype E2/2, with Type 3 hyperlipoproteinemia (n = 4) or normal plasma lipids (n = 1). A multicompartmental model was developed using SAAM 27 to characterize the appearance, intravascular metabolism, and clearance from the plasma of retinyl palmitate-labeled dietary lipoproteins. The half-times for retinyl palmitate clearance from the chylomicron remnant fraction (T1/2 REMNANT) were 14.1 +/- 9.7 min in Group A; they were prolonged in Group B (50.7 +/- 20.8 min) and were extremely prolonged for Type 3 subjects in Group C (611.9 +/- 419.9 min). One subject with the apoE 2/2 phenotype and normal plasma triglycerides had a T1/2 REMNANT of 66.8 min. T1/2 REMNANT was highly correlated with fasting plasma triglycerides in Group A and B (r = 0.77, slope = 0.15), and in Group C (r = 0.97, slope = 0.85). These results support the interpretation that delayed chylomicron remnant clearance in subjects with endogenous hypertriglyceridemia may be largely secondary to overproduction of VLDL particles, whose remnants compete with chylomicron remnants for removal by the liver via apoE receptor-mediated endocytosis. The subjects with apoE 2/2 have an additional defect in the removal of chylomicron remnants presumably due to the structural abnormality in their apoE.  相似文献   

2.
In an investigation of alterations in cholesterol metabolism during contraceptive steroid use, we studied plasma clearance of chylomicron remnants. Six healthy women were studied on and off contraceptive steroid therapy. Remnant clearance was measured from the disappearance of retinyl palmitate administered intravenously in plasma endogenously labeled with retinyl palmitate. We also measured cholesterol in HDL and its subfractions and postheparin lipoprotein lipase and hepatic triglyceride lipase activities. Plasma decay of retinyl palmitate was biexponential. The rapid component, reflecting chylomicron remnant removal, accounted for about 90% of the total clearance in all studies. During contraceptive steroid intake, both rapid and slow decay constants and the calculated plasma clearance rates were significantly increased (mean values: rapid decay constant, control 0.048 versus treated 0.101 min-1, P less than 0.05; slow decay constant, 0.004 versus 0.014 min-1, P less than 0.01; plasma clearance 74 versus 115 ml/min, P less than 0.025) indicating enhanced hepatic uptake of chylomicron remnants and probably an increased hepatic uptake of higher density lipoproteins (d greater than 1.006 g/ml). Total postheparin lipolytic activity and lipoprotein lipase activity were depressed in all six women (P less than 0.05) and hepatic triglyceride lipase activity was increased in four of five subjects. Contraceptive steroids also caused a decrease in the HDL2/HDL3 cholesterol ratio (P less than 0.05), implying impaired peripheral lipoprotein triglyceride hydrolysis and/or increased HDL2 clearance by hepatic triglyceride lipase. In conclusion, during intake of contraceptive steroids, the plasma clearance of chylomicron remnants and higher density lipoproteins was increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To characterize chylomicron remnant clearance by the liver, plasma elimination of retinyl palmitate-labeled chylomicron remnants was studied in 18 healthy subjects, ages 21-42 years. Autologous plasma containing retinyl palmitate-labeled chylomicrons and their remnants was injected intravenously, and retinyl palmitate disappearance was measured in serial plasma samples in all subjects and in lipoprotein fractions in 11 subjects. The injected doses (n = 18) ranged from 0.34 to 7.11 mumol retinyl palmitate in d less than or equal to 1.006 g/ml particles with an average molar ratio of 330/1 of retinyl palmitate/apoB-48 (n = 8). The label distributed in the intravascular space and exhibited apparent first order elimination, monoexponential in 6 and biexponential in 12 subjects. The first rapid component k1 (t1/2 18.8 +/- 11.4 min, n = 18) was shown to represent retinyl palmitate in particles of d less than or equal to 1.006 g/ml, i.e., chylomicron remnants, and the second slow component k2 (t1/2 123 +/- 62 min, n = 12) small amounts of retinyl palmitate (11 +/- 7%) injected in d greater than 1.006 g/ml particles (therefore excluded from analysis). Assuming a single-compartment model, initial rates of elimination (= dose x k1) of labeled chylomicron remnants obeyed (P = 0.06) Michaelis-Menten saturation kinetics: Km was 921 +/- 305 nmol retinyl palmitate label and Vmax 124 +/- 14 nmol/min corresponding to 0.88 nM apoB-48 for Km and 0.25 x 10(-3) nmol apoB-48.min-1.g-1 liver for Vmax. Their elimination was limited neither by the injected triglyceride dose nor theoretically by the liver blood flow. After the intake of 70 g of fat (cream) containing retinyl palmitate, the plasma retinyl palmitate concentration exceeded the estimated saturation concentration for 7 h. In conclusion, physiological chylomicron remnant catabolism by the liver appears to be saturable by ordinary lipid intake in healthy humans.  相似文献   

4.
The role of the various apolipoprotein E isoproteins in the removal of chylomicrons and their remnants from plasma was studied in 16 normolipidemic subjects with various apoE phenotypes: 5 homozygous for apoE-2, 6 heterozygous for apoE-2 (phenotype E3/2), and 5 without apoE-2 (phenotypes E3/3, E4/4, and E4/3). The subjects were given an oral fat load as cream (50 g/m2). Retinyl palmitate was added as a marker for chylomicrons and their remnants. Blood was sampled at regular time intervals for 8 hr. Remnant particles were isolated from the d less than 1.019 g/ml fraction by heparin-Sepharose chromatography (heparin-bound fraction) after removing the large chylomicrons by flotation at 7,8 X 10(5) g-min. All groups showed a rise in triglycerides in serum and in the chylomicron fraction between 3 and 6 hr to about twice the basal value, followed by a decrease to nearly fasting values. In the homozygous E-2 subjects, fasting lipids in the remnant fraction were increased. In all three groups the fat load did not induce a significant rise in the lipids of the remnant fraction. The homozygous E-2 group showed a strong continuing rise in the retinyl palmitate concentration in the chylomicron and remnant fractions up to 8 hr, whereas in the other groups its maximum was already reached at 5 hr at a much lower level. At 8 hr similar retinyl palmitate concentrations were found in both fractions in the heterozygous E-2 subjects compared to the non-E-2 subjects. These results indicate a delayed removal of chylomicrons and chylomicron remnants in normolipidemic homozygous E-2, but not in heterozygous E-2 subjects.  相似文献   

5.
The redistribution of rat chylomicron retinoids following incubation with fasting- or postheparin human plasma was investigated. With fasting plasma, chylomicron retinol appeared among higher density lipoprotein acceptors and density greater than 1.21 gm/ml plasma proteins; only small amounts of retinyl ester were found therein. With postheparin plasma, retinyl ester-containing chylomicron remnants with densities spanning the low- and high density lipoprotein distributions were generated; appreciable quantities of retinyl esters appeared among rho greater than 1.019 lipoproteins only in the presence of postheparin plasma. These observations are consistent with the conservation of retinyl esters, but not retinol, among chylomicrons and their catabolic products.  相似文献   

6.
In comparison to very low density lipoprotein (VLDL), chylomicrons are cleared quickly from plasma. However, small changes in fasting plasma VLDL concentration substantially delay postprandial chylomicron triglyceride clearance. We hypothesized that differential binding to lipoprotein lipase (LPL), the first step in the lipolytic pathway, might explain these otherwise paradoxical relationships. Competition binding assays of different lipoproteins were performed in a solid phase assay with purified bovine LPL at 4 degrees C. The results showed that chylomicrons, VLDL, and low density lipoprotein (LDL) were able to inhibit specific binding of (125)I-labeled VLDL to the same extent (85.1% +/- 13.1, 100% +/- 6.8, 90.7% +/- 23.2% inhibition, P = NS), but with markedly different efficiencies. The rank order of inhibition (K(i)) was chylomicrons (0.27 +/- 0.02 nm apoB) > VLDL (12.6 +/- 3.11 nm apoB) > LDL (34.8 +/- 11.1 nm apoB). By contrast, neither triglyceride (TG) liposomes, high density lipoprotein (HDL), nor LDL from patients with familial hypercholesterolemia were efficient at displacing the specific binding of (125)I-labeled VLDL to LPL (30%, 39%, and no displacement, respectively). Importantly, smaller hydrolyzed chylomicrons had less affinity than the larger chylomicrons (K(i) = 2.34 +/- 0.85 nm vs. 0.27 +/- 0.02 nm apoB respectively, P < 0.01). This was also true for hydrolyzed VLDL, although to a lesser extent. Chylomicrons from patients with LPL deficiency and VLDL from hypertriglyceridemic subjects were also studied. Taken together, our results indicate an inverse linear relationship between chylomicron size and K(i) whereas none was present for VLDL. We hypothesize that the differences in binding affinity demonstrated in vitro when considered with the differences in particle number observed in vivo may largely explain the paradoxes we set out to study.  相似文献   

7.
OBJECTIVE--To test the hypothesis that subjects who clear chylomicron remnants slowly from plasma may be at higher risk of coronary artery disease than indicated by their fasting plasma lipid concentrations. DESIGN--Case control study over three years. SETTING--An 800 bed general municipal hospital. SUBJECTS--85 normolipidaemic patients with coronary artery disease selected prospectively and matched with 85 normolipidaemic subjects with normal coronary arteries on angiography. INTERVENTIONS--All subjects were given a vitamin A fat loading test which specifically labels intestinal lipoproteins with retinyl palmitate. MAIN OUTCOME MEASURE--Postprandial lipoprotein metabolism. RESULTS--The area below the chylomicron remnant retinyl palmitate curve was significantly increased in the coronary artery disease group as compared with the controls (mean 23.4 (SD 15.0) v 15.3 (8.9) mumol/l.h; 95% confidence interval of difference 4.37 to 11.82). CONCLUSION--Normolipidaemic patients with coronary artery disease had significantly higher concentrations of chylomicron remnants in plasma than normolipidaemic subjects with normal coronary vessels. This may explain the mechanism underlying the susceptibility to atherosclerosis of coronary artery disease patients with normal fasting lipid values. As diet and drugs can ameliorate the accumulation of postprandial lipoproteins in plasma, the concentration of chylomicron remnants should be measured in patients at high risk of coronary artery disease.  相似文献   

8.
Postprandial lipemia after an oral fat challenge was studied in middle-aged men with visceral obesity. The two groups had similar plasma cholesterol levels, but obese subjects had higher levels of plasma triglyceride and reduced amounts of high-density cholesterol. Fasting plasma insulin was fourfold greater in obese subjects because of concomitant insulin resistance, with a calculated HOMA score of 3.1 +/- 0.6 vs. 0.8 +/- 0.2, respectively. Plasma apolipoprotein B(48) (apoB(48)) and retinyl palmitate (RP) after an oral fat challenge were used to monitor chylomicron metabolism. Compared with lean subjects, the fasting concentration of apoB(48) was more than twofold greater in obese individuals, suggestive of an accumulation of posthydrolyzed particles. After the oral lipid load, the incremental areas under the apoB(48) and RP curves (IAUC) were both significantly greater in obese subjects (apoB(48): 97 +/- 17 vs. 44 +/- 12 microg.ml(-1). h; RP: 3,120 +/- 511 vs. 1,308 +/- 177 U. ml(-1). h, respectively). A delay in the conversion of chylomicrons to remnants probably contributed to postprandial dyslipidemia in viscerally obese subjects. The triglyceride IAUC was 68% greater in obese subjects (4.7 +/- 0.6 vs. 2.8 +/- 0.8 mM. h, P < 0.06). Moreover, peak postprandial triglyceride was delayed by approximately 2 h in obese subjects. The reduction in triglyceride lipolysis in vivo did not appear to reflect changes in hydrolytic enzyme activities. Postheparin plasma lipase rates were found to be similar for lean and obese subjects. In this study, low-density lipoprotein (LDL) receptor expression on monunuclear cells was used as a surrogate marker of hepatic activity. We found that, in obese subjects, the binding of LDL was reduced by one-half compared with lean controls (70.9 +/- 15.07 vs. 38.9 +/- 4.6 ng LDL bound/microg cell protein, P = 0.02). Because the LDL receptor is involved in the removal of proatherogenic chylomicron remnants, we suggest that the hepatic clearance of these particles might be compromised in insulin-resistant obese subjects. Premature and accelerated atherogenesis in viscerally obese, insulin-resistant subjects may in part reflect delayed clearance of postprandial lipoprotein remnants.  相似文献   

9.
Feeding rabbits 500 mg of cholesterol daily for 4 to 15 days greatly increased the concentration of esterified cholesterol in lipoproteins of d less than 1.006 g/ml. The origin of hypercholesterolemic very low density lipoproteins was investigated by monitoring the degradation of labeled lymph chyomicrons administered to normal and cholesterol-fed rabbits. Chylomicrons were labeled in vivo by feeding either 1) [3H]cholesterol and [14C]oleic acid or 2) [14C]cholesterol and [3H]retinyl acetate. After intravenous injection of labeled chylomicrons to recipient rabbits, [14C]triglyceride hydrolysis was equally rapid in normal and cholesterol-fed animals. Normal rabbits rapidly removed from plasma both labeled cholesteryl and retinyl esters, whereas cholesterol-fed rabbits retained nearly 50% of doubly labeled remnants in plasma 25 min after chylomicron injection. Ultracentrifugal separation of plasma into subfractions of very low density lipoproteins showed that chylomicron remnants in cholesterol-fed animals are found among all subclasses of very low density lipoproteins. Analysis of cholesteryl ester specific activity-time curves for the very low density lipoproteins subfraction from hypercholesterolemic plasma showed that nearly all esterified cholesterol in large very low density lipoproteins and approximately 30% of esterified cholesterol in small very low density lipoproteins was derived from chylomicron degradation. Apparently, nearly two-thirds of the esterified cholesterol in total very low density lipoproteins from moderately hypercholesterolemic rabbits is of dietary origin.  相似文献   

10.
The uptake and vascular transport of ingested Aroclor 1242, an isomeric mixture of polychlorinated biphenyls (PCB), was investigated in experimental animals. High concentrations of ingested PCB were found in the chylomicron fraction of thoracic duct lymph. When the lymph flow was exteriorized PCB were not subsequently found in the vascular circulation. When lymph was not exteriorized plasma PCB concentrations reached maximal levels 6 hr after ingestion. Less than 1% of total plasma PCB was detected in cellular fractions of blood over a 10-hr period following ingestion. Chylomicrons contained 31% of total plasma PCB 30 min after ingestion, decreasing to less than 6% at 4 hr. A maximum of 10% of plasma PCB at 1 hr, and less than 5% at 6 hr, after ingestion was associated with very low density lipoproteins (VLDL) or low density lipoproteins (LDL). Although PCB enter the vascular circulation with the chylomicron fractions of lymph, delipoproteinated plasma contained 52% of the total PCB in blood collected 30 min after ingestion. This level increased to 78% after 2 hr, and remained constant at about 80% for an additional 8-hr period. High performance liquid chromatographic (HPLC) examinations of delipoproteinated plasma from blood taken 6 hr after PCB ingestion showed elution of greater than 95% of plasma PCB to coincide with the albumin peak. Electrophoretic examinations of delipoproteinated plasma showed the association of PCB with albumin to be noncovalent. The results suggest that apolar PCB are absorbed into intestinal epithelial cells from which they are secreted into the lymphatic drainage sequestered within the apolar core of chylomicrons, that these PCB transit the thoracic duct and enter the vascular circulation within chylomicrons and are metabolized or otherwise released from chylomicrons during hepatic chylomicron clearance, and that resulting PCB or PCB derivatives circulate in association with plasma albumins.  相似文献   

11.
The lymphatic absorption of cholesterol and plasma clearance of chylomicrons were investigated in Cu-deficient rats (CuD) fed 0.5 mg Cu/kg diet, as compared with Cu-adequate control rats (CuA) fed 7.5 mg/kg diet. Cholesterol absorption was measured by the 14C-radioactivity appearing in the mesenteric lymph at hourly intervals for 8 hr after an intraduodenal dose of [14C]cholesterol. The plasma clearance of chylomicrons was measured at 3, 6, and 10 min after an intravenous dose of chylomicrons labeled in vivo with [3H]retinyl ester. Cumulative [14C]cholesterol absorption and total lymphatic output of cholesterol were significantly decreased in CuD at 4 hr and thereafter, with no change in percentage distribution of free and esterified cholesterol. Over an 8-hr period, 7.3% of the dose was absorbed by CuD and 9.2% by CuA. When [3H]chylomicrons, obtained from a CuD or CuA donor rat, were injected into CuD and CuA recipient rats, the label was cleared faster in CuD during the first 3 min. At 6 and 10 min, however, no significant difference in percentage clearance of the dose was observed between the groups. The half-life (t1/2) of [3H]chylomicrons and the total 3H-radioactivity taken up by the liver during the entire 10-min period did not differ between the groups, regardless of the source of chylomicrons. The activities of both endothelial lipoprotein lipase (LPL) and hepatic lipase (HL) in postheparin plasma were markedly lower in CuD. As expressed in micromoles fatty acid released/hr/ml plasma, the activities of LPL in CuD and CuA were 32.6 +/- 1.9 and 45.6 +/- 1.3, respectively. A similar magnitude of difference was also observed in HL activity. The data provide evidence that copper deficiency impairs the intestinal transport of cholesterol and the peripheral lipolysis of chylomicrons. The data, however, strongly suggest that the hepatic uptake of chylomicron remnants via the apo-E-dependent mechanism may not be impaired in Cu deficiency.  相似文献   

12.
Apolipoprotein (apo)A-IV is synthesized in the small intestine during fat absorption and is incorporated onto the surface of nascent chylomicrons. In circulation, apoA-IV is displaced from the chylomicron surface by high density lipoprotein-associated C and E apolipoproteins; this exchange is critical for activation of lipoprotein lipase and chylomicron remnant clearance. The variant allele A-IV-2 encodes a Q360H polymorphism that increases the lipid affinity of the apoA-IV-2 isoprotein. We hypothesized that this would impede the transfer of C and E apolipoproteins to chylomicrons, and thereby delay the clearance of postprandial triglyceride-rich lipoproteins. We therefore measured triglycerides in plasma, S(f) > 400 chylomicrons, and very low density lipoproteins (VLDL) in 14 subjects heterozygous for the A-IV-2 allele (1/2) and 14 subjects homozygous for the common allele (1/1) who were fed a standard meal containing 50 gm fat per m(2) body surface area. All subjects had the apoE-3/3 genotype. Postprandial triglyceride concentrations in the 1/2 subjects were significantly higher between 2;-5 h in plasma, chylomicrons, and VLDL, and peaked at 3 h versus 2 h for the 1/1 subjects. The area under the triglyceride time curves was greater in the 1/2 subjects (plasma, P = 0.045; chylomicrons, P = 0.027; VLDL, P = 0.063). A post-hoc analysis of the frequency of the apoA-IV T347S polymorphism suggested that it had an effect on triglyceride clearance antagonistic to that of the A-IV-2 allele. We conclude that individuals heterozygous for the A-IV-2 allele display delayed postprandial clearance of triglyceride-rich lipoproteins.  相似文献   

13.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

14.
Dietary sphingomyelin (SM) is hydrolyzed by intestinal alkaline sphingomyelinase and neutral ceramidase to sphingosine, which is absorbed and converted to palmitic acid and acylated into chylomicron triglycerides (TGs). SM digestion is slow and is affected by luminal factors such as bile salt, cholesterol, and other lipids. In the gut, SM and its metabolites may influence TG hydrolysis, cholesterol absorption, lipoprotein formation, and mucosal growth. SM accounts for approximately 20% of the phospholipids in human plasma lipoproteins, of which two-thirds are in LDL and VLDL. It is secreted in chylomicrons and VLDL and transferred into HDL via the ABCA1 transporter. Plasma SM increases after periods of large lipid loads, during suckling, and in type II hypercholesterolemia, cholesterol-fed animals, and apolipoprotein E-deficient mice. SM is thus an important amphiphilic component when plasma lipoprotein pools expand in response to large lipid loads or metabolic abnormalities. It inhibits lipoprotein lipase and LCAT as well as the interaction of lipoproteins with receptors and counteracts LDL oxidation. The turnover of plasma SM is greater than can be accounted for by the turnover of LDL and HDL particles. Some SM must be degraded via receptor-mediated catabolism of chylomicron and VLDL remnants and by scavenger receptor class B type I receptor-mediated transfer into cells.  相似文献   

15.
Approximately 25% of postprandial retinoid is cleared from the circulation by extrahepatic tissues. Little is known about physiologic factors important to this uptake. We hypothesized that lipoprotein lipase (LpL) contributes to extrahepatic clearance of chylomicron vitamin A. To investigate this, [3H]retinyl ester-containing rat mesenteric chylomicrons were injected intravenously into induced mutant mice and nutritionally manipulated rats. The tissue sites of uptake of 3H label by wild type mice and LpL-null mice overexpressing human LpL in muscle indicate that LpL expression does influence accumulation of chylomicron retinoid. Skeletal muscle from mice overexpressing human LpL accumulated 1.7- to 2.4-fold more 3H label than wild type. Moreover, heart tissue from mice overexpresssing human LpL, but lacking mouse LpL, accumulated less than half of the 3H-label taken up by wild type heart. Fasting and heparin injection, two factors that increase LpL activity in skeletal muscle, increased uptake of chylomicron [3H] retinoid by rat skeletal muscle. Using [3H]retinyl palmitate and its non-hydrolyzable analog retinyl [14C]hexadecyl ether incorporated into Intralipid emulsions, the importance of retinyl ester hydrolysis in this process was assessed. We observed that 3H label was taken up to a greater extent than 14C label by rat skeletal muscle, suggesting that retinoid uptake requires hydrolysis.In summary, for each of our experiments, the level of lipoprotein lipase expression in skeletal muscle, heart, and/or adipose tissue influenced the amount of [3H]retinoid taken up from chylomicrons and/or their remnants.  相似文献   

16.
Newly absorbed retinol is transported in association with chylomicrons and their remnants. In addition, after intake of high doses of retinol, significant amounts are also found in low-density lipoprotein (LDL). As both chylomicron remnants and LDL may be taken up by cells via the LDL receptor, and retinoids inhibit proliferation of some leukaemic cells, we have studied the uptake of retinol in leukaemic cells via the LDL-receptor pathway. HL-60 cells contain saturable binding sites for LDL. The binding of LDL to its receptor has a dissociation constant of about 3.2 x 10(-9) M, and the number of receptors per cell was calculated to be about 2700. Uptake of 125I-LDL by HL-60 cells was increased 2-fold by preincubating the cells with mevinolin. The presence of specific receptors for LDL on HL-60 cells was further confirmed by the finding that exogenous LDL cholesterol was able to up-regulate the ACAT (acyl-CoA: cholesterol acyltransferase) activity of HL-60 cells. We then tested the uptake of retinyl ester in leukaemic cells via the LDL-receptor pathway. HL-60 cells were incubated with LDL or chylomicron remnants labelled with [3H]retinyl palmitate. Uptake of retinyl ester associated with both LDL and chylomicron remnants was observed. Furthermore, the presence of excess LDL decreased the uptake by 75-100%, supporting the hypothesis that the uptake of retinyl ester occurred via the LDL receptor in HL-60 cells.  相似文献   

17.
Four subfractions of plasma VLDL characterized by decreasing Sf value and LDL were isolated by density gradient preparative ultracentrifugation from normotriglyceridemic (NTG) and hypertriglyceridemic (HTG) (type IV) subjects in the fasting state and after a fatty meal. Chemical analysis and computation of numbers of particles in each fraction showed that the hyperlipidemia of type IV subjects was accounted for by an increase in total numbers of VLDL and a shift in the distribution of VLDL towards particles of larger diameter. Postprandial hyperlipidemia was due to the presence of chylomicron remnants rather than intact chylomicrons, and was accounted for by an increase in particle diameter of the largest VLDL subfraction rather than by an increase in particle numbers. Postprandial hyperlipedemia was accompanied by a shift in the distribution of VLDL towards particles of larger diameter in both NTG and HTG subjects, probably because of competition for the triglyceride-depletion process between chylomicrons and hepatic VLDL. Most chylomicron remnants were removed from the circulation without degradation to smaller VLDL or to LDL, but some remnants were sufficienty small to contribute to smaller VLDL subfractions. The LDL of type IV subjects contained more apoprotein B than those from NTG subjects, and this difference was associated with increases in diameter, molecular weight, density, and the ratio of protein: phospholipid in LDL from type IV subjects. Defective degradation of large VLDL to small VLDL, and of VLDL to LDL may be related to this alteration in apoprotein B content of the lipoproteins in type IV subjects.  相似文献   

18.
Previously it was shown in rabbits that 20-40% of the injected dose of chylomicrons was cleared from the plasma by perisinusoidal bone marrow macrophages. The present study was undertaken to determine whether the bone marrow of other species also cleared significant amounts of chylomicrons. Canine chylomicrons, labeled in vivo with [14C]cholesterol and [3H] retinol, were injected into marmosets (a small, New World primate), rats, guinea pigs, and dogs. Plasma clearance and tissue uptake of chylomicrons in these species were contrasted with results obtained in rabbits in parallel studies. The chylomicrons were cleared rapidly from the plasma in all animals; the plasma clearance of chylomicrons was faster in rats, guinea pigs, and dogs compared with their clearance from the plasma of rabbits and marmosets. The liver was a major site responsible for the uptake of these lipoproteins in all species. However, as in rabbits, the bone marrow of marmosets accounted for significant levels of chylomicron uptake. The uptake by the marmoset bone marrow ranged from one-fifth to one-half the levels seen in the liver. The marmoset bone marrow also took up chylomicron remnants. Perisinusoidal macrophages protruding through the endothelial cells into the marrow sinuses were responsible for the accumulation of the chylomicrons in the marmoset bone marrow, as determined by electron microscopy. In contrast to marmosets, chylomicron clearance by the bone marrow of rats, guinea pigs, and dogs was much less, and the spleen in rats and guinea pigs took up a large fraction of chylomicrons. The uptake of chylomicrons by the non-human primate (the marmoset), in association with the observation that triglyceride-rich lipoproteins accumulate in bone marrow macrophages in patients with type I, III, or V hyperlipoproteinemia, suggests that in humans the bone marrow may clear chylomicrons from the circulation. It is reasonable to speculate that chylomicrons have a role in the delivery of lipids to the bone marrow as a source of energy and for membrane biosynthesis or in the delivery of fat-soluble vitamins.  相似文献   

19.
Human patients with familial hypercholesterolemia (FH) and Watanabe heritable hyperlipidemic rabbits (WHHL), while lacking normal receptors recognizing low-density lipoproteins (LDL), are said to have normal clearance of chylomicrons. In the present study, emulsions with a similar lipid composition to chylomicrons were injected intravenously in homozygous WHHL rabbits and normal control rabbits fed diet with low or high cholesterol. Radioactive labels tracing emulsion triolein and cholesteryl oleate were both removed rapidly from the bloodstream, with the removal rate of triolein always faster than that of cholesteryl oleate. This pattern was similar to the clearance of normal chylomicrons in rabbits or rats, and was consistent with the formation of remnant lipoproteins after hydrolysis of emulsion triolein by lipoprotein lipase, followed by hepatic uptake of the remnants. The removal of cholesteryl oleate was significantly slower in WHHL rabbits than in normal controls, suggesting that the absence of LDL receptor function led to impaired remnant clearance. Measured in post-heparin plasma, the activity of lipoprotein lipase was decreased in WHHL rabbits, but this was not associated with clear evidence of defective lipolysis of emulsion triolein. Apolipoprotein E did not appear to be deficient in WHHL rabbits. Plasma devoid of lipoproteins less than 1.006 g/ml from WHHL and normal control rabbits transferred similar amounts of apolipoprotein E to chylomicron-like emulsions after incubation. Impaired clearance of chylomicron remnants possibly contributes to the hypertriglyceridemia of WHHL rabbits and to accelerated atherogenesis when the function of LDL receptors is defective.  相似文献   

20.
1. The hepatic metabolism of chylomicrons and chylomicron remnants was compared after adding approximately equal numbers of each lipoprotein particle to the perfusate of isolated livers. 2. At least 40% of the added remnants were metabolized by the liver compared with less than 3% for chylomicrons. 3. There was significantly more net removal of labelled remnants than of chylomicrons by the liver. 4. A greater proportion of labelled cholesterol than of labelled triacylglycerol fatty acids was transferred to the liver from each lipoprotein. 5. Cholesteryl esters of remnants were hydrolysed to triacylglycerol fatty lipoprotein. 5. Cholesteryl esters of remnants were hydrolysed to triacylglycerol fatty acids of remnants were oxidized to CO2 more extensively than those of chylomicrons. 6. There was greater oxidation of remnant glycerolipic [(1(-14)C]oleate than of glycerolipid [1(-14)C]palmitate. 7. A large fraction of the fatty acids of remnants, but not of chylomicrons, was transferred to phospholipids, which were released by the liver in a lipoprotein of relative density less than 1.006. 8. Label from remnants, but not from chylomicrons, was found in lipoproteins of relative density greater than 1.006, which were not released during perfusion but could be flushed out from the liver at the end of perfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号