首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lysine acetylation appears to be crucial for diverse biological phenomena, including all the DNA-templated processes, metabolism, cytoskeleton dynamics, cell signaling, and circadian rhythm. A growing number of cellular proteins have now been identified to be acetylated and constitute the complex cellular acetylome. Cross-talk among protein acetylation together with other post-translational modifications fine-tune the cellular functions of different protein machineries. Dysfunction of acetylation process is often associated with several diseases, especially cancer. This review focuses on the recent advances in the role of protein lysine acetylation in diverse cellular functions and its implications in cancer manifestation.  相似文献   

3.
It is now becoming apparent that cross-talk between two protein lysine modifications, acetylation and ubiquitination, is a critical regulatory mechanism controlling vital cellular functions. The most apparent effect is the inhibition of proteasome-mediated protein degradation by lysine acetylation. Analysis of the underlying mechanisms, however, shows that, besides a direct competition between the two lysine modifications, more complex and indirect processes also connect these two signalling pathways. These findings point to protein lysine acetylation as a potential regulator of various cellular functions involving protein ubiquitination.  相似文献   

4.
Iron deficiency is a common micronutrient deficiency associated with metabolic changes in the levels of iron regulatory proteins, hepcidin and ferroportin. Studies have associated dysregulation of iron homeostasis to other secondary and life-threatening diseases including anaemia, neurodegeneration and metabolic diseases. Iron deficiency plays a critical role in epigenetic regulation by affecting the Fe2+/α-ketoglutarate-dependent demethylating enzymes, Ten Eleven Translocase 1–3 (TET 1–3) and Jumonji-C (JmjC) histone demethylase, which are involved in epigenetic erasure of the methylation marks on both DNA and histone tails, respectively. In this review, studies involving epigenetic effects of iron deficiency associated with dysregulation of TET 1–3 and JmjC histone demethylase enzyme activities on hepcidin/ferroportin axis are discussed.  相似文献   

5.
Post-translational lysine methylation and acetylation are two major modifications of lysine residues. They play critical roles in various biological processes, especially in gene regulation. Identification of protein methylation and acetylation sites would be a foundation for understanding their modification dynamics and molecular mechanism. This work presents a method called PLMLA that incorporates protein sequence information, secondary structure and amino acid properties to predict methylation and acetylation of lysine residues in whole protein sequences. We apply an encoding scheme based on grouped weight and position weight amino acid composition to extract sequence information and physicochemical properties around lysine sites. The prediction accuracy for methyllysine and acetyllysine are 83.02% and 83.08%, respectively. Feature analysis reveals that methyllysine is likely to occur at the coil region and acetyllysine prefers to occur at the helix region of protein. The upstream residues away from the central site may be close to methylated lysine in three-dimensional structure and have a significant influence on methyllysine, while the positively charged residues may have a significant influence on acetyllysine. The online service is available at http://bioinfo.ncu.edu.cn/inquiries_PLMLA.aspx.  相似文献   

6.
BackgroundMost of the enzymes involved in the central carbon metabolism are acetylated in Lys residues. It has been claimed that this covalent modification represents a novel regulatory mechanism by which both enzyme/transporter activities and pathway fluxes can be modulated.MethodsTo establish which enzymes are regulated by acetylation, a systematic experimental analysis of activities and acetylation profile for several energy metabolism enzymes and pathway fluxes was undertaken in cells and mitochondria.ResultsThe majority of the glycolytic and neighbor enzymes as well as mitochondrial enzymes indeed showed Lys-acetylation, with GLUT1, HPI, CS, ATP synthase displaying comparatively lower acetylation patterns. The incubation of cytosolic and mitochondrial fractions with recombinant Sirt-3 produced lower acetylation signals, whereas incubation with acetyl-CoA promoted protein acetylation. Significant changes in acetylation levels of MDH and IDH-2 from rat liver mitochondria revealed no change in their activities. Similar observations were attained for the cytosolic enzymes from AS-30D and HeLa cells. A minor but significant (23%) increase in the AAT-MDH complex activity induced by acetylation was observed. To examine this question further, AS-30D and HeLa cells were treated with nicotinamide and valproic acid. These compounds promoted changes in the acetylation patterns of glycolytic proteins, although their activities and the glycolytic flux (as well as the OxPhos flux) revealed no clear correlation with acetylation.ConclusionAcetylation seems to play no predominant role in the control of energy metabolism enzyme activities and pathway fluxes.General significanceThe physiological function of protein acetylation on energy metabolism pathways remains to be elucidated.  相似文献   

7.
The role of hypothalamic malonyl-CoA in energy homeostasis   总被引:1,自引:0,他引:1  
Energy balance is monitored by hypothalamic neurons that respond to peripheral hormonal and afferent neural signals that sense energy status. Recent physiologic, pharmacologic, and genetic evidence has implicated malonyl-CoA, an intermediate in fatty acid synthesis, as a regulatory component of this energy-sensing system. The level of malonyl-CoA in the hypothalamus is dynamically regulated by fasting and feeding, which alter subsequent feeding behavior. Fatty acid synthase (FAS) inhibitors, administered systemically or intracerebroventricularly to lean or obese mice, increase hypothalamic malonyl-CoA leading to the suppression of food intake. Conversely, lowering malonyl-CoA with an acetyl-CoA carboxylase (ACC) inhibitor or by the ectopic expression of malonyl-CoA decarboxylase in the hypothalamus increases food intake and reverses inhibition by FAS inhibitors. Physiologically, the level of hypothalamic malonyl-CoA appears to be determined through phosphorylation/dephosphorylation of ACC by AMP kinase in response to changes in the AMP/ATP ratio, an indicator of energy status. Recent evidence suggests that the brain-specific carnitine:palmitoyl-CoA transferase-1 (CPT1c) may be a regulated target of malonyl-CoA that relays the "malonyl-CoA signal" in hypothalamic neurons that express the orexigenic and anorexigenic neuropeptides that regulate food intake and peripheral energy expenditure. Together these findings support a role for malonyl-CoA as an intermediary in the control of energy homeostasis.  相似文献   

8.
Quantum-chemical calculations of a series of molecules with primary amino groups were carried out, and the results were compared with experimental data on the in vivo acetylation degree. A criterion of the interaction efficiency of primary amines with arylamine N-acetyltransferase was suggested. An analysis of the known data and the results of our calculations showed that the interaction peculiarities of xenobiotics containing primary amino groups with the acetylating system of an organism largely define the spectrum of side effects of these xenobiotics.  相似文献   

9.
Stütz AM  Morrison CD  Argyropoulos G 《Peptides》2005,26(10):1771-1781
The melanocortin system plays an important role in the regulation of energy homeostasis. The Agouti-related protein (AGRP) is a natural antagonist of the action of alpha-melanocyte stimulating hormone (alpha-MSH) at the melanocortin receptors (MCR). AGRP is upregulated by fasting while intracerebroventricular injections of synthetic AGRP lead to increased appetite and food intake. Transgenic mice overexpressing AGRP are also hyperphagic and eventually become obese. AGRP is, therefore, a significant regulator of energy balance and a candidate gene for human fatness. Indeed, humans with common single nucleotide polymorphisms (SNPs) in the promoter or the coding region are leaner and resistant to late-onset obesity than wild-type individuals. AGRP is also expressed in the periphery. Recent studies show that AGRP in the adrenal gland is upregulated by fasting as much as it is in the hypothalamus. These data open up the possibility for a wider role by AGRP not only in food intake but also in the regulation of energy balance through its actions on peripheral tissues. This review summarizes recent advances in the biochemical and physiological properties of AGRP in an effort to enhance our understanding of the role this powerful neuropeptide plays in mammalian energy homeostasis.  相似文献   

10.
Syrian hamsters, like many humans, increase food intake and body adiposity in response to stress. We hypothesized that glucocorticoids (cortisol and corticosterone) mediate these stress-induced effects on energy homeostasis. Because Syrian hamsters are dual secretors of cortisol and corticosterone, differential effects of each glucocorticoid on energy homeostasis were investigated. First, adrenal intact hamsters were injected with varying physiological concentrations of cortisol, corticosterone, or vehicle to emulate our previously published defeat regimens (i.e., 1 injection/day for 5 days). Neither food intake nor body weight was altered following glucocorticoid injections. Therefore, we investigated the effect of sustained glucocorticoid exposure on energy homeostasis. This was accomplished by implanting hamsters with supraphysiological steady-state pellets of cortisol, corticosterone, or cholesterol as a control. Cortisol, but not corticosterone, significantly decreased food intake, body mass, and lean and fat tissue compared with controls. Despite decreases in body mass and adiposity, cortisol significantly increased circulating free fatty acids, triglyceride, cholesterol, and hepatic triglyceride concentrations. Although corticosterone did not induce alterations in any of the aforementioned metabolic end points, Syrian hamsters were responsive to the effects of corticosterone since glucocorticoids both induced thymic involution and decreased adrenal mass. These findings indicate that cortisol is the more potent glucocorticoid in energy homeostasis in Syrian hamsters. However, the data suggest that cortisol alone does not mediate stress-induced increases in food intake or body mass in this species.  相似文献   

11.
Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity, but not hyperphagia, are recapitulated in female mice lacking ERα in hypothalamic steroidogenic factor-1 (SF1) neurons. In contrast, deletion of ERα in hypothalamic pro-opiomelanocortin (POMC) neurons leads to hyperphagia, without directly influencing energy expenditure or fat distribution. Further, simultaneous deletion of ERα from both SF1 and POMC neurons causes hypometabolism, hyperphagia, and increased visceral adiposity. Additionally, female mice lacking ERα in SF1 neurons develop anovulation and infertility, while POMC-specific deletion of ERα inhibits negative feedback regulation of estrogens and impairs fertility in females. These results indicate that estrogens act on distinct hypothalamic ERα neurons to regulate different aspects of energy homeostasis and reproduction.  相似文献   

12.
Gradual disclosure of the molecular basis of selective neuronal apoptosis during neurodegenerative diseases reveals active participation of acetylating and deacetylating agents during the process. Several studies have now successfully manipulated neuronal vulnerability by influencing the dose and enzymatic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), enzymes regulating acetylation homeostasis within the nucleus, thus focusing on the importance of balanced acetylation status in neuronal vitality. It is now increasingly becoming clear that acetylation balance is greatly impaired during neurodegenerative conditions. Herein, we attempt to illuminate molecular means by which such impairment is manifested and how the compromised acetylation homeostasis is intimately coupled to neurodegeneration. Finally, we discuss the therapeutic potential of reinstating the HAT-HDAC balance to ameliorate neurodegenerative diseases.  相似文献   

13.
In parallel with increased prevalence of overweight people in affluent societies are individuals trying to lose weight, often using low-carbohydrate diets. Nevertheless, long-term metabolic consequences of those diets, usually high in (saturated) fat, remain unclear. Therefore, we investigated long-term effects of high-fat diets with different carbohydrate/protein ratios on energy balance and fuel homeostasis in obese (fa/fa) Zucker and lean Wistar rats. Animals were fed high-carbohydrate (HC), high-fat (HsF), or low-carbohydrate, high-fat, high-protein (LC-HsF-HP) diets for 60 days. Both lines fed the LC-HsF-HP diet displayed reduced energy intake compared with those fed the HsF diet (Zucker, -3.7%) or the HC diet (Wistar rats, -12.4%). This was not associated with lower weight gain relative to HC fed rats, because of increased food efficiencies in each line fed HsF and particularly LC-HsF-HP food. Zucker rats were less glucose tolerant than Wistar rats. Lowest glucose tolerances were found in HsF and particularly in LC-HsF-HP-fed animals irrespective of line, but this paralleled reduced plasma adiponectin levels, elevated plasma resistin levels, higher retroperitoneal fat masses, and reduced insulin sensitivity (indexed by insulin-induced hypoglycemia) only in Wistar rats. In Zucker rats, however, improved insulin responses during glucose tolerance testing and tendency toward increased insulin sensitivities were observed with HsF or LC-HsF-HP feeding relative to HC feeding. Thus, despite adverse consequences of LC-HsF diets on blood glucose homeostasis, principal differences exist in the underlying hormonal regulatory mechanisms, which could have benefits for B-cell functioning and insulin action in the obese state but not in the lean state.  相似文献   

14.
Lu Z  Cheng Z  Zhao Y  Volchenboum SL 《PloS one》2011,6(12):e28228
Recent proteomics studies suggest high abundance and a much wider role for lysine acetylation (K-Ac) in cellular functions. Nevertheless, cross influence between K-Ac and other post-translational modifications (PTMs) has not been carefully examined. Here, we used a variety of bioinformatics tools to analyze several available K-Ac datasets. Using gene ontology databases, we demonstrate that K-Ac sites are found in all cellular compartments. KEGG analysis indicates that the K-Ac sites are found on proteins responsible for a diverse and wide array of vital cellular functions. Domain structure prediction shows that K-Ac sites are found throughout a wide variety of protein domains, including those in heat shock proteins and those involved in cell cycle functions and DNA repair. Secondary structure prediction proves that K-Ac sites are preferentially found in ordered structures such as alpha helices and beta sheets. Finally, by mutating K-Ac sites in silico and predicting the effect on nearby phosphorylation sites, we demonstrate that the majority of lysine acetylation sites have the potential to impact protein phosphorylation, methylation, and ubiquitination status. Our work validates earlier smaller-scale studies on the acetylome and demonstrates the importance of PTM crosstalk for regulation of cellular function.  相似文献   

15.
In yeast, a sudden transition from glucose limitation to glucose excess leads to a new steady state at increased metabolic fluxes with a sustained decrease in the ATP concentration. Although this behaviour has been rationalized as an adaptive metabolic strategy, the mechanism behind it remains unclear. Nevertheless, it is thought that, on glucose addition, a metabolite derived from glycolysis may up-regulate ATP-consuming reactions. The adenine nucleotides themselves have been ruled out as the signals that mediate this regulation. This is mainly because, in that case, it would be expected that the new steady state at increased fluxes would be accompanied by an increased stationary ATP concentration. In this study, we present a core model consisting of a monocyclic interconvertible enzyme system. Using a supply-demand approach, we demonstrate that this system can account for the empirical observations without involving metabolites other than the adenine nucleotides as effectors. Moreover, memory is an emerging property of such a system, which may allow the cell to sense both the current energy status and the direction of the changes.  相似文献   

16.
Acetylation of specific lysines within the core histone tail domains plays a critical role in regulating chromatin-based activities. However, the structures and interactions of the tail domains and the molecular mechanisms by which acetylation directly alters chromatin structures are not well understood. To address these issues we developed a chemical method to quantitatively determine binding affinities of specific regions within the individual tail domains in model chromatin complexes. Examinations of specific sites within the H2B tail domain indicate that this tail contains distinct structural elements and binds within nucleosomes with affinities that would reduce the activity of tail-binding proteins 10-50-fold from that deduced from peptide binding studies. Moreover, we find that mutations mimicking lysine acetylation do not cause a global weakening of tail-DNA interactions but rather the results suggest that acetylation leads to a much more subtle and specific alteration in tail interactions than has been assumed. In addition, we provide evidence that acetylation at specific sites in the tail is not additive with several events resulting in similar, localized changes in tail binding.  相似文献   

17.
Lysine acylation of proteins is a crucial chemical reaction, both as a post-translational modification and as a method for bioconjugation. We previously developed a chemical catalyst, DSH, which activates a chemically stable thioester including acyl-CoA, allowing the site-selective lysine acylation of histones under physiological conditions. However, a more active catalyst is required for efficient lysine acylation in more complex biological milieu, such as in living cells, but there are no rational guidelines for developing efficient lysine acylation catalysts for use under physiological conditions as opposed to in organic solvents. We, herein, conducted a kinetic analysis of the ability of DSH and several derivatives to mediate lysine acetylation to better understand the structural elements essential for high acetylation activity under physiological conditions. Interestingly, the obtained trend in reactivity was different from that observed in organic solvents, suggesting that a different principle is necessary for designing chemical catalysts specifically for use under physiological conditions compared to catalysts for use in organic solvents. Based on the obtained information, we identified a new catalyst scaffold with high activity and structural flexibility for further modification to improve this catalyst system.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号