首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kok J  Thomas LC  Olma T  Chen SC  Iredell JR 《PloS one》2011,6(8):e23285
Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a novel method for the direct identification of bacteria from blood culture broths. We evaluate for the first time, the performance of the MALDI Sepsityper? Kit and MS for the identification of bacteria compared to standard phenotypic methods using the manufacturer's specified bacterial identification criteria (spectral scores ≥1.700-1.999 and ≥2.000 indicated identification to genus and species level, respectively). Five hundred and seven positive blood culture broths were prospectively examined, of which 379 (74.8%; 358 monomicrobial, 21 polymicrobial) were identified by MALDI-TOF MS; 195 (100%) and 132 (67.7%) of 195 gram-positive; and 163 (100%) and 149 (91.4%) of 163 gram-negative organisms from monomicrobial blood cultures were correctly identified to genus and species level, respectively. Spectral scores <1.700 (no identification) were obtained in 128/507 (25.2%) positive blood culture broths, including 31.6% and 32.3% of gram-positive and polymicrobial blood cultures, respectively. Significantly more gram-negative organisms were identified compared to gram-positive organisms at species level (p<0.0001). Five blood cultures were misidentified, but at species level only; including four monomicrobial blood cultures with Streptococcus oralis/mitis that were misidentified as Streptococcus pneumoniae. Positive predictive values for the direct identification of both gram-positive and gram-negative bacteria from monomicrobial blood culture broths to genus level were 100%. A diagnostic algorithm for positive blood culture broths that incorporates gram staining and MALDI-TOF MS should identify the majority of pathogens, particularly to genus level.  相似文献   

2.
Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a novel method for the direct identification of bacteria from blood culture broths. We evaluate for the first time, the performance of the MALDI Sepsityper™ Kit and MS for the identification of bacteria compared to standard phenotypic methods using the manufacturer''s specified bacterial identification criteria (spectral scores ≥1.700–1.999 and ≥2.000 indicated identification to genus and species level, respectively). Five hundred and seven positive blood culture broths were prospectively examined, of which 379 (74.8%; 358 monomicrobial, 21 polymicrobial) were identified by MALDI-TOF MS; 195 (100%) and 132 (67.7%) of 195 gram-positive; and 163 (100%) and 149 (91.4%) of 163 gram-negative organisms from monomicrobial blood cultures were correctly identified to genus and species level, respectively. Spectral scores <1.700 (no identification) were obtained in 128/507 (25.2%) positive blood culture broths, including 31.6% and 32.3% of gram-positive and polymicrobial blood cultures, respectively. Significantly more gram-negative organisms were identified compared to gram-positive organisms at species level (p<0.0001). Five blood cultures were misidentified, but at species level only; including four monomicrobial blood cultures with Streptococcus oralis/mitis that were misidentified as Streptococcus pneumoniae. Positive predictive values for the direct identification of both gram-positive and gram-negative bacteria from monomicrobial blood culture broths to genus level were 100%. A diagnostic algorithm for positive blood culture broths that incorporates gram staining and MALDI-TOF MS should identify the majority of pathogens, particularly to genus level.  相似文献   

3.
Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections.  相似文献   

4.

Background

With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate.

Methodology/Principal Findings

We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66%) were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%.

Conclusions/Significance

MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture broths growing viridans streptococci is obtained in the near future.  相似文献   

5.
Delay in identification of microorganisms hamper the prompt initiation of adequate empirical antibiotic therapy of bacteremia. MALDI-TOF-MS allows identification of microorganisms directly from colonies within minutes. Identification of microorganisms responsible for bacteremia can be made directly from blood culture bottles. Many different protocols have been published, all based on the separation of microorganisms from erythrocytes and blood culture broth that alter the quality of spectra. Correct identifications were obtained for most of the procedures used in at least 80% of cases, within 20 to 60 min once the blood culture is detected positive. MALDI-TOF-MS, by far the fastest identification technique, offers a significant breakthrough in the management of bacteremia.  相似文献   

6.
Few developments in microbiological diagnostics have had such a rapid impact on species level identification of microorganisms as matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Conventional differentiation methods rely on biochemical criteria and require additional pre-testing and lengthy incubation procedures. In comparison, MALDI-TOF MS can identify bacteria and yeast within minutes directly from colonies grown on culture plates. This radically new, methodically simple approach profoundly reduces the cost of consumables and time spent on diagnostics. The reliability and accuracy of the method have been demonstrated in numerous studies and different systems are already commercially available. Novel applications of the system besides microbial species level identification are also being explored. This includes identification of pathogens from positive blood cultures or directly from patient samples, such as urine. Currently, intriguing MALDI-TOF MS developments are being made regarding the phenotypic detection of certain antibiotic resistance mechanisms, e.g., β-lactamases and carbapenemases. This mini review provides an overview of the literature in the field and also includes our own data and experiences gathered from over 4 years of routine MALDI-TOF MS use in a university hospital’s microbiological diagnostics facility.  相似文献   

7.
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) fingerprinting has recently become an effective instrument for rapid microbiological diagnostics and in particular for identification of micro-organisms directly in a positive blood culture. The aim of the study was to evaluate a collection of 82 stored yeast isolates from bloodstream infection, by MALDI-TOF MS; 21 isolates were identified also directly from positive blood cultures and in the presence of other co-infecting micro-organisms. Of the 82 isolates grown on plates, 64 (76%) were correctly identified by the Vitek II system and 82 (100%) by MALDI-TOF MS; when the two methods gave different results, the isolate was identified by PCR. MALDI-TOF MS was unreliable in identifying two isolates (Candida glabrata and Candida parapsilosis) directly from blood culture; however, direct analysis from positive blood culture samples was fast and effective for the identification of yeast, which is of great importance for early and adequate treatment.  相似文献   

8.
Rapid identification of microorganisms in urine is essential for patients with urinary tract infections (UTIs). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed as a method for the direct identification of urinary pathogens. Our purpose was to compare centrifugation-based MALDI-TOF MS and short-term culture combined with MALDI-TOF MS for the direct identification of pathogens in urine specimens. We collected 965 urine specimens from patients with suspected UTIs, 211/965 isolates were identified as positive by conventional urine culture. Compared with the conventional method, the results of centrifugation-based MALDI-TOF MS were consistent in 159/211 cases (75.4%), of which 135/159 (84.9%) had scores ≥ 2.00; 182/211 cases (86.3%) were detected using short-term culture combined with MALDI-TOF MS, of which 153/182 (84.1%) had scores ≥ 2.00. There were no apparent differences among the three methods (p = 0.135). MALDI-TOF MS appears to accelerate the microbial identification speed in urine and saves at least 24 to 48 hours compared with the routine urine culture. Centrifugation-based MALDI-TOF MS is characterized by faster identification speed; however, it is substantially affected by the number of bacterial colonies. In contrast, short-term culture combined with MALDI-TOF MS has a higher detection rate but a relatively slow identification speed. Combining these characteristics, the two methods may be effective and reliable alternatives to traditional urine culture.  相似文献   

9.
Up to now, blood culturing systems are the method of choice to diagnose bacteremia. However, definitive pathogen identification from positive blood cultures is a time-consuming procedure, requiring subculture and biochemical analysis. We developed a microarray for the identification of Staphylococcus aureus comprising PCR generated gene-segments, which can reduce the blood culture post-processing time to a single day. Moreover, it allows concomitant identification of virulence factors and antibiotic resistance determinants directly from positive blood cultures without previous amplification by PCR. The assay unambiguously identifies most of the important virulence genes such as tsst-1, sea, seb, eta and antibiotic resistance genes such as mecA, aacA-aphD, blaZ and ermA. To obtain positive signals, 20 ng of purified genomic S. aureus DNA or 2 microg of total DNA extracted from blood culture was required. The microarray specifically distinguished S. aureus from gram-negative bacteria as well as from closely related coagulase negative staphylococci (CoNS). The microarray-based identification of S. aureus can be accomplished on the same day blood cultures become positive in the Bactec. The results of our study demonstrate the feasibility of microarray-based systems for the direct identification and characterization of bacteria from cultured clinical specimens.  相似文献   

10.
11.
Rapid Diagnosis of Bacteremia   总被引:28,自引:4,他引:24       下载免费PDF全文
Early appropriate treatment of bacteremia is important in minimizing morbidity and mortality. Standard blood culture methods are not optimal since several days are often required for recovery and identification of organisms which may be present in the blood. The use of a membrane filter technique allows one to grow any organisms present in blood much more rapidly than by broth or pour plate culture. Furthermore, growth is in the form of typical colonies on the surface of solid media, and a series of rapid diagnostic tests may be used to provide speedy identification. Use of membrane filters also facilitates removal by washing of normal antibacterial factors and antimicrobial drugs which may be present in blood. Although the filter technique yielded the most rapid growth, broth culture and whole blood pour plates yielded more positive cultures and use of all three systems was necessary for maximal recovery of organisms in blood cultures. Data on quantitative aspects of bacteremia in the antimicrobial era are also presented. The number of low level bacteremias (10 colonies/ml or less) is surprisingly high. This is particularly true for gram-negative bacilli; antimicrobial therapy at the time of culture undoubtedly influenced these results greatly. Finally, suggestions are given for a much simpler and more efficient membrance filter blood culture technique.  相似文献   

12.
Early appropriate treatment of bacteremia is important in minimizing morbidity and mortality. Standard blood culture methods are not optimal since several days are often required for recovery and identification of organisms which may be present in the blood. The use of a membrane filter technique allows one to grow any organisms present in blood much more rapidly than by broth or pour plate culture. Furthermore, growth is in the form of typical colonies on the surface of solid media, and a series of rapid diagnostic tests may be used to provide speedy identification. Use of membrane filters also facilitates removal by washing of normal antibacterial factors and antimicrobial drugs which may be present in blood. Although the filter technique yielded the most rapid growth, broth culture and whole blood pour plates yielded more positive cultures and use of all three systems was necessary for maximal recovery of organisms in blood cultures. Data on quantitative aspects of bacteremia in the antimicrobial era are also presented. The number of low level bacteremias (10 colonies/ml or less) is surprisingly high. This is particularly true for gram-negative bacilli; antimicrobial therapy at the time of culture undoubtedly influenced these results greatly. Finally, suggestions are given for a much simpler and more efficient membrance filter blood culture technique.  相似文献   

13.
MALDI-TOF mass spectrometry (MS) is becoming essential in most clinical microbiology laboratories throughout the world. Its successful use is mainly attributable to the low operational costs, the universality and flexibility of detection, as well as the specificity and speed of analysis. Based on characteristic protein spectra obtained from intact cells – by means of simple, rapid and reproducible preanalytical and analytical protocols – MALDI-TOF MS allows a highly discriminatory identification of yeasts and filamentous fungi starting from colonies. Whenever used early, direct identification of yeasts from positive blood cultures has the potential to greatly shorten turnaround times and to improve laboratory diagnosis of fungemia. More recently, but still at an infancy stage, MALDI-TOF MS is used to perform strain typing and to determine antifungal drug susceptibility. In this article, the authors discuss how the MALDI-TOF MS technology is destined to become a powerful tool for routine mycological diagnostics.  相似文献   

14.
基质辅助激光解吸/电离飞行时间质谱(matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,MALDI-TOF MS)是一种新兴的高通量技术,已广泛应用于临床微生物、食品微生物和水产微生物的快速鉴定。如何进一步提高MALDI-TOF MS在微生物鉴定中的分辨率是该技术当前面临的一大挑战。为了高效处理大量高维微生物MALDI-TOF MS数据,各种机器学习算法得到了应用。本文综述了机器学习在微生物MALDI-TOFMS鉴定中的应用。首先,本文在介绍机器学习在微生物MALDI-TOF MS分类中的工作流程后,进一步对MALDI-TOF MS的数据特征、MALDI-TOF MS数据库、数据的预处理和模型的性能评估进行了描述。然后讨论了典型的机器学习分类算法和集成学习算法的应用。简单的机器学习算法很难满足微生物MALDI-TOF MS分类的高分辨率的需求,而组合不同机器学习算法和集成学习算法可以获得更好的微生物分类性能。在MALDI-TOF MS数据的预处理方面,小波算法和遗传算法的应用最广,它们...  相似文献   

15.
Bacteremia is a common cause of morbidity and mortality in children treated in pediatric intensive care unit (PICU). We have investigated the causative agents of bacteremia in our PICU over a one-year period, to determine mortality associated with such infection and identify the dependent predictors for morbidity and mortality. From 1 January till 31 December 2006, 479 patients were admitted in the PICU and 379 blood culture samples were taken. Samples were incubated in the BACTEC 9050 System, and isolates identified by routine microbiological methods. A pair of samples taken for aerobic and anaerobic culture were statistically regarded as one sample. Data collected from the medical records of each patient were recorded onto standardized collections sheets and included demographic information, predisposing conditions, source(s) of infection, important clinical and laboratory parameters at the time of infection, and microbiological data. Based on these data, positive blood cultures were classified as either contaminants or true bacteremias. During a year period, 117 episodes of bacteremia were documented in 72 patients. The most frequent isolates were the coagulase-negative staphylococci 32.2% (39), followed by Candida spp. 30.5% (36). The mean white blood cell count (WBC) on the day of bacteremia was 15.2 x 10(9)/L (range 0.1-48.0 x 10(9)/L), and 3.3% of episodes occurred in neutropenic (WBC count < 1 x 10(9)/L) children. The mean temperature on the day of infection was 38.2 +/- 1.1 degrees C (range, 34-41 degrees C). Some newborns 23% (n = 5) had a significantly lower mean temperature (p < 0.02) and lower mean WBC count (p < 0.05) than older children. Hemodynamic instability was noted in 11% of bacteremic episodes. Among all bacteremias, intravascular catheters were implicated in 22.6%, pneumonia in 20.4%, genitourinary tract in 14.2%, surgical wounds in 11.7% and, gastrointestinal tract in 9.8%. Seven patients died because of sepsis. Early diagnosis, prompt blood culture reports, followed by appropriate antibiotic treatment is essential in reducing mortality in such patients. Short hospital stay and restricted use of invasive devices should be the aims to reduce the risk of bacteremia during the stay in the PICU.  相似文献   

16.

Background

MALDI-TOF mass spectrometry (MS) is a reliable method for bacteria identification. Some databases used for this purpose lack reference profiles for Brucella species, which is still an important pathogen in wide areas around the world. We report the creation of profiles for MALDI-TOF Biotyper 2.0 database (Bruker Daltonics, Germany) and their usefulness for identifying brucellae from culture plates and blood cultures.

Methodology/Principal Findings

We created MALDI Biotyper 2.0 profiles for type strains belonging to B. melitensis biotypes 1, 2 and 3; B. abortus biotypes 1, 2, 5 and 9; B. suis, B. canis, B ceti and B. pinnipedialis. Then, 131 clinical isolates grown on plate cultures were used in triplicate to check identification. Identification at genus level was always correct, although in most cases the three replicates reported different identification at species level. Simulated blood cultures were performed with type strains belonging to the main human pathogenic species (B. melitensis, B. abortus, B. suis and B. canis), and studied by MALDI-TOF MS in triplicate. Identification at genus level was always correct.

Conclusions/Significance

MALDI-TOF MS is reliable for Brucella identification to the genus level from culture plates and directly from blood culture bottles.  相似文献   

17.
MALDI-TOF MS is a recent technique, which revolutionized bacterial species identifications, due to its simplicity, accuracy and speed of analysis. The same efficiency of species identification for fungi is highly sought. This review aims to discuss the evolving role of MALDI-TOF MS in the laboratory diagnosis of fungal infections. Yeast identifications are increasingly being performed with MALDI-TOF MS in a routine setting with good results. A further extension of the libraries will further increase its potential. Direct identification of yeast in blood cultures and MALDI-TOF MS susceptibility testing are new promising applications. The identification of filamentous fungi on MALDI-TOF MS is still challenging, but knowledge and experience is taking huge leaps forward.  相似文献   

18.
基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)因其具有快速、准确、高通量等特点在食品微生物检测和临床微生物鉴定领域有广泛的应用。对MALDI-TOF MS数据的预处理和分析是微生物鉴定的关键步骤,通过对数据的处理可以从大量的数据中提取微生物的特征肽或者蛋白信息,并通过有监督和无监督学习方法对这些特征信息进行分类和聚类,从而实现对微生物的鉴定、分型和同源性分析。本文就MALDI-TOF MS鉴定微生物中所应用的数理统计分析方法和数据分析软件进行综述。  相似文献   

19.
与传统的微生物鉴定技术相比,基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS)是一种准确、可靠和快速的鉴定和分型的技术。本文通过检索近年来国内外相关研究论文,总结最新的研究进展,发现MALDI-TOF MS在临床病原微生物、食源性微生物以及环境微生物等鉴定中有较大的优势,加快了微生物鉴定的进程,同时探索该技术在新领域的最新进展和面临的挑战,以期为我国基质辅助激光解吸电离飞行时间质谱技术的发展提供参考。  相似文献   

20.
Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号