共查询到20条相似文献,搜索用时 0 毫秒
1.
We hypothesized that C-reactive protein (CRP) may affect the cell cycle and induce apoptotic changes of monocytes. CRP (∼25 μg/ml) significantly increased expressions of B-cell translocation gene 2 (BTG2) mRNA and protein in human monocytes through pathways involving CD32/NADPH oxidase 2/p53, which eventually induced G2/M phase arrest and apoptotic cell death. Such pro-apoptotic effect of CRP was not found in thioglycollate-elicited intraperitoneal monocytes/macrophages harvested from BTG2-knockout male C57BL/6 mice (n = 5). Within atheromatous plaques obtained from CRP-transgenic male LDLR−/− C57BL/6 mice (n = 5) and human coronary arteries, BTG2 co-localized with CRP, p53 and monocytes/macrophages. Therefore the pro-apoptotic pathway of CRP-CD32-Nox2-p53-BTG2 may contribute to the retardation of the atherogenic process. 相似文献
2.
3.
Qadan LR Perez-Stable CM Anderson C D'Ippolito G Herron A Howard GA Roos BA 《Biochemical and biophysical research communications》2001,285(5):1259-1266
Few therapeutic treatment options are available for patients suffering from metastatic androgen-independent prostate cancer. We investigated the ability of the estrogen metabolite 2-methoxyestradiol to inhibit the proliferation of a variety of human prostate cancer cell lines in vitro and to inhibit the growth of androgen-independent prostate cancer in a transgenic mouse model in vivo. Our results showed that 2-methoxyestradiol is a powerful growth inhibitor of LNCaP, DU 145, PC-3, and ALVA-31 prostate cancer cells. Cell flow cytometry of 2-methoxyestradiol-treated DU 145 cells showed a marked accumulation of cells in the G2/M phase of the cell cycle and an increase in the sub-G1 fraction (apoptotic). In addition, staining for annexin V, changes in nuclear morphology, and inhibition of caspase activity support a role for apoptosis. More importantly, we showed that 2-methoxyestradiol inhibits prostate tumor progression in the Ggamma/T-15 transgenic mouse model of androgen-independent prostate cancer without toxic side effects. These results in cell culture and an animal model support investigations into the clinical use of 2-methoxyestradiol in patients with androgen-independent prostate cancer. 相似文献
4.
Nidhi Nigam 《Biochemical and biophysical research communications》2009,381(2):253-258
Lupeol, present in fruits and medicinal plants, is a biologically active compound that has been shown to have various pharmacological properties in experimental studies. In the present study, we demonstrated the modulatory effect of lupeol on 7,12-dimethylbenz[a]anthracene (DMBA)-induced alterations on cell proliferation in the skin of Swiss albino mice. Lupeol treatment showed significant (p < 0.05) preventive effects with marked inhibition at 48, 72, and 96 h against DMBA-mediated neoplastic events. Cell-cycle analysis showed that lupeol-induced G2/M-phase arrest (16-37%) until 72 h, and these inhibitory effects were mediated through inhibition of the cyclin-B-regulated signaling pathway involving p53, p21/WAF1, cdc25C, cdc2, and cyclin-B gene expression. Further lupeol-induced apoptosis was observed, as shown by an increased sub-G1 peak (28%) at 96 h, with upregulation of bax and caspase-3 genes and downregulation of anti-apoptotic bcl-2 and survivin genes. Thus, our results indicate that lupeol has novel anti-proliferative and apoptotic potential that may be helpful in designing strategies to fight skin cancer. 相似文献
5.
Demethoxycurcumin induces Bcl-2 mediated G2/M arrest and apoptosis in human glioma U87 cells 总被引:1,自引:0,他引:1
Pratibha Mehta Luthra Rakesh Kumar Amresh Prakash 《Biochemical and biophysical research communications》2009,384(4):420-425
Docking analysis of curcumin (C1), demethoxycurcumin (C2) and bisdemethoxycurcumin (C3) with Bcl-2 illustrated that among the three curcuminoids, C2 binds more efficiently into its putative active site. C1, C2 and C3 were purified from turmeric rhizomes to demonstrate the molecular mechanism of their anticancer activity on human glioma U87 cells. Human glioma U87 cells treated with curcuminoids resulted in activation of Bcl-2 mediated G2 checkpoint, which was associated with the induction of G2/M arrest and apoptosis. The binding of C1, C2 and C3 with Bcl-2 protein was confirmed with circular dichroism (CD) spectroscopy. Present work revealed that C2 induced Bcl-2 mediated G2/M arrest and apoptosis most effectively. 相似文献
6.
In this study, we showed that curcumin treatment resulted in activation of Chk1-mediated G2 checkpoint, which was associated with the induction of G2/M arrest and the resistance of cancer cells to curcumin-induced apoptosis. Further investigation revealed that inhibition of Chk1 significantly abrogated G2/M arrest and sensitized curcumin-resistant cells to apoptosis via upregulation of Bad and in turn the loss of mitochondrial membrane potential. These results indicate that Chk1-mediated G2/M arrest may serve as a mechanism for curcumin resistance and Chk1 represents a potential target for the reversal of this resistance. Our findings should be helpful for clinical application of curcumin. 相似文献
7.
Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cells 总被引:22,自引:0,他引:22
Park JW Choi YJ Jang MA Baek SH Lim JH Passaniti T Kwon TK 《Biochemical and biophysical research communications》2001,286(4):726-734
Arsenic trioxide has recently been shown to inhibit growth and induce apoptosis in acute promyelocytic leukemia (APL), but little is known about the molecular mechanisms mediating these effects. Here we demonstrate that treatment of promonocytic U937 cells with arsenic trioxide leads to G2/M arrest which was associated with a dramatic increase in the levels of cyclin B and cyclin B-dependent kinase and apoptosis. We further show that apoptosis occurs after bcl-2 phosphorylation and caspase-3 activation followed by cleavage of PARP and PLC-gamma1 degradation and DNA fragmentation. The arsenic trioxide-induced apoptosis could be blocked by the protein synthesis inhibitor cycloheximide. In addition, pretreatment of U937 cells with the DNA polymerase inhibitor aphidicolin also blocked apoptosis, but did not cause the arrest of cells in the G2/M phase. The findings suggest that arsenic trioxide exerts its growth-inhibitory effects by modulating expression and/or activity of several key G2/M regulatory proteins. Furthermore, arsenic trioxide-mediated G2/M arrest correlates with the onset of apoptosis. 相似文献
8.
Impaired G2/M cell cycle arrest induces apoptosis in pyruvate carboxylase knockdown MDA-MB-231 cells
Khanti Rattanapornsompong Janya Khattiya Phatchariya Phannasil Narumon Phaonakrop Sittiruk Roytrakul Sarawut Jitrapakdee Chareeporn Akekawatchai 《Biochemistry and Biophysics Reports》2021
BackgroundPrevious studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown.MethodsWe generated the PC knockdown (PCKD) MDA-MB-231 cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics.ResultsPC knockdown MDA-MB-231 cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP.ConclusionsSuppression of PC in MDA-MB-231 cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells.General significanceOur results highlight the possibility of the use of PC as an anti-cancer drug target. 相似文献
9.
10.
Lee YS Choi KM Choi MH Ji SY Lee S Sin DM Oh KW Lee YM Hong JT Yun YP Yoo HS 《Cell proliferation》2011,44(4):320-329
Objectives: Melanoma is the most aggressive form of skin cancer, and it resists chemotherapy. Candidate drugs for effective anti‐cancer treatment have been sought from natural resources. Here, we have investigated anti‐proliferative activity of myriocin, serine palmitoyltransferase inhibitor, in the de novo sphingolipid pathway, and its mechanism in B16F10 melanoma cells. Material and methods: We assessed cell population growth by measuring cell numbers, DNA synthesis, cell cycle progression, and expression of cell cycle regulatory proteins. Ceramide, sphingomyelin, sphingosine and sphingosine‐1‐phosphate levels were analysed by HPLC. Results: Myriocin inhibited proliferation of melanoma cells and induced cell cycle arrest in the G2/M phase. Expressions of cdc25C, cyclin B1 and cdc2 were decreased in the cells after exposure to myriocin, while expression of p53 and p21waf1/cip1 was increased. Levels of ceramide, sphingomyelin, sphingosine and sphingosine‐1‐phosphate in myriocin‐treated cells after 24 h were reduced by approximately 86%, 57%, 75% and 38%, respectively, compared to levels in control cells. Conclusions: Our results suggest that inhibition of sphingolipid synthesis by myriocin in melanoma cells may inhibit expression of cdc25C or activate expression of p53 and p21waf1/cip1, followed by inhibition of cyclin B1 and cdc2, resulting in G2/M arrest of the cell cycle and cell population growth inhibition. Thus, modulation of sphingolipid metabolism by myriocin may be a potential target of mechanism‐based therapy for this type of skin cancer. 相似文献
11.
12.
Dulin NO Pratt P Tiruppathi C Niu J Voyno-Yasenetskaya T Dunn MJ 《The Journal of biological chemistry》2000,275(28):21317-21323
RGS3 belongs to a family of the regulators of G protein signaling (RGS). We previously demonstrated that cytosolic RGS3 translocates to the membrane to inhibit G(q/11) signaling (Dulin, N. O., Sorokin, A., Reed, E., Elliott, S., Kehrl, J., and Dunn, M. J. (1999) Mol. Cell. Biol. 19, 714-723). This study examines the properties of a recently identified truncated variant termed RGS3T. Both RGS3 and RGS3T bound to endogenous Galpha(q/11) and inhibited endothelin-1-stimulated calcium mobilization and mitogen-activated protein kinase activity to a similar extent. However, unlike cytosolically localized RGS3, RGS3T was found predominantly in the nucleus and partially in the plasma membrane. Furthermore, RGS3T, but not RGS3, caused cell rounding and membrane blebbing. Finally, 44% of RGS3T-transfected cells underwent apoptosis after serum withdrawal, which was significantly higher than that of RGS3-transfected cells (7%). Peptide sequence analysis revealed two potential nuclear localization signal (NLS) sequences in RGS3T. Further truncation of the RGS3T N terminus containing putative NLSs resulted in a significant reduction of nuclear versus cytoplasmic staining of the protein. Moreover, this truncated RGS3T no longer induced apoptosis. In summary, RGS3 and its truncated variant RGS3T are similar in their ability to inhibit G(q/11) signaling but are different in their intracellular distribution. These data suggest that, in addition to being a GTPase-activating protein, RGS3T has other distinct functions in the nucleus of the cell. 相似文献
13.
14.
Wang J Zhao B Zhang W Wu X Wang R Huang Y Chen D Park K Weimer BC Shen Y 《Bioorganic & medicinal chemistry letters》2010,20(23):7054-7058
Mycoepoxydiene (MED) is a polyketide isolated from a marine fungus associated with mangrove forests. It contains an oxygen-bridged cyclooctadiene core and an α,β-unsaturated δ-lactone moiety. MED induced the reorganization of cytoskeleton in actively growing HeLa cells by promoting formation of actin stress fiber and inhibiting polymerization of tubulin. MED could induce cell cycle arrest at G2/M in HeLa cells. MED-associated apoptosis was characterized by the formation of fragmented nuclei, PARP cleavage, cytochrome c release, activation of caspase-3, and an increased proportion of sub-G1 cells. Additionally, MED activated MAPK pathways. Interestingly, the time of JNK, p38, and Bcl-2 activation did not correlate with the release of cytochrome c. This study is the first report demonstrating the action mechanism of MED against tumor cell growth. These results provide the potential of MED as a novel low toxic antitumor agent. 相似文献
15.
Wheat germ lectin (WGA) is a cytotoxic lectin for many cell lines [Wang et al., 2000], but its underlying mechanism is not clear. In this report, we found that incubation of synchronized mouse L929 fibroblasts with WGA resulted in a dose-dependent reduction of intracellular incorporation of 3H-thymidine and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide)-conversion activity (IC50 congruent with 0.4 microM). Fluorescein-conjugated WGA was demonstrated to transport from the cell surface into the paranuclear region of cultured L929 cells within 30 min, and subsequently evoked lipid peroxidation of plasma membrane and vacuolation in the cytoplasm of these cells. Studies with tritiated thymidine incorporation, immunofluorescence microscopy, immunoblotting analysis and flow cytometry revealed that WGA inhibited cell cycle progression after one replication, resulting in G2/M arrest and alteration of cell cycle regulatory proteins, particularly activation of p21Cip1/WAF1 and suppression of cyclin B and cdc 2. Although there was an increase of cytosolic caspase 3 and bax protein expression, no apoptotic bodies were observed by both fluorescence and transmission electron microscopy. These results suggest that WGA arrested L929 proliferation after one cell cycle in the G2/M phase through activation of the p21Cip1/WAF1 and suppression of Cyclin B-Cdc2. 相似文献
16.
17.
Wang G Guo X Chen H Lin T Xu Y Chen Q Liu J Zeng J Zhang XK Yao X 《Bioorganic & medicinal chemistry letters》2012,22(5):2114-2118
Among the seven natural resveratrol analogs separated and identified from Pholidota yunnanensis R(OLFE), we found phoyunbene B (PYB, trans-3,4'-dihydroxy-2',3',5-trimethoxystilbene) was more effective in inhibiting the growth of HepG2 hepatocellular carcinoma cells than resveratrol. The inhibitory effect of PYB in HepG2 cells was due to its induction of G2/M cell cycle arrest and apoptosis. Induction of G2/M phase cell cycle arrest by PYB was associated with its up-regulation of Cyclin B1, while its induction of apoptosis was accompanied with its down-regulation of Bcl-2 and up-regulation of Bax. Our in vitro invasion/migration assays also showed that PYB could inhibit the invasion of hepatocellular carcinoma cells. 相似文献
18.
Che Mat Mohd Firdaus Mohamad Hanif Ezanee Azlina Abdul Murad Nor Azian Ibrahim Kamariah Harun Roslan Jamal Rahman 《Molecular biology reports》2021,48(2):1493-1503
Molecular Biology Reports - Despite the advancements in primary brain tumour diagnoses and treatments, the mortality rate remains high, particularly in glioblastoma (GBM). Chemoresistance,... 相似文献
19.
Xu J Osuga Y Yano T Morita Y Tang X Fujiwara T Takai Y Matsumi H Koga K Taketani Y Tsutsumi O 《Biochemical and biophysical research communications》2002,292(2):456-462
We investigated the impact of bisphenol A (BPA) on murine ovarian granulosa cells. Ovarian granulosa cells were cultured with 100 fM to 100 microM BPA for 24 h to 72 h. BPA decreased granulosa cell viability in a dose- and time-dependent manner. The lowest concentration that induced a significant decrease was 100 pM (89.2 +/- 4.0% of the control). TUNEL analysis demonstrated that treatment with BPA increased apoptosis of granulosa cells in a dose- and time-dependent manner. In addition, flow cytometry analyses revealed that treatment with BPA resulted in G2-to-M arrest, which was most prominent at 48 h. BPA increased the expression of Bax and concomitantly decreased the expression of Bcl2 at both protein and mRNA levels of granulosa cells. These findings suggest that low, presumably environmentally relevant doses of BPA, decrease the viability of granulosa cells by inducing apoptosis and G2-to-M arrest. Up-regulation of Bax and down-regulation of Bcl2 were suggested to be involved in this apoptotic effect. 相似文献
20.
Apigetrin is a flavonoid glycoside phytonutrient derived from fruits and vegetables that is well known for a variety of biological activities such as antioxidant and anti-inflammatory activities. In the current study, we determined the effect of apigetrin on AGS gastric cancer cell. Apigetrin reduced cancer cell proliferation and induced G2/M phase cell cycle arrest by regulating cyclin B1, cdc25c and cdk1 protein expression in AGS cell. Apigetrin treatment caused apoptotic cell death in AGS cells, characterized by the accumulation of apoptosis portion, cleavage of caspase-3 and poly ADP-ribose polymerase (PARP). Apigetrin-treated cells increased the expression of extrinsic apoptosis pathway proteins and mRNA. However, intrinsic apoptosis pathway related proteins were not altered. In addition, AGS cells treated with apigetrin increased autophagic cell death, featured by the formation of autophagic vacuole and acidic vesicular organelles. Autophagy marker proteins, such as LC3B-II and beclin-1, were increased, and p62, an autophagy flux marker protein, was also increased by endoplasmic reticulum stress. Also, the phosphorylation of PI3K/AKT/mTOR pathway proteins and its downstream targets in apigetrin-treated AGS cells was identified to be decreased. Taken together, these data suggest that apigetrin-treated AGS cells induced G2/M phase cell cycle arrest, extrinsic apoptosis and autophagic cell death through PI3K/AKT/mTOR pathway, which can lead to the inhibition of gastric cancer development. Thus, our findings strongly indicate that apigetrin is a basic natural derived compound that could be used as a nutrient source with potential anticancer activities against gastric cancer. 相似文献