首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the function of the aryl hydrocarbon receptor nuclear translocator (ARNT), a conditional gene knockout mouse was made using the Cre-loxP system. Exon 6, encoding the conserved basic-helix-loop-helix domain of the protein, was flanked by loxP sites and introduced into the Arnt gene by standard gene disruption techniques using embryonic stem cells. Mice homozygous for the floxed allele were viable and had no readily observable phenotype. The Mx1-Cre transgene, in which Cre is under control of the interferon-gamma promoter, was introduced into the Arnt-floxed mouse line. Treatment with polyinosinic-polycytidylic acid to induce expression of Cre resulted in complete disruption of the Arnt gene and loss of ARNT messenger RNA (mRNA) expression in liver. To determine the role of ARNT in gene control in the intact animal mouse liver, expression of target genes under control of an ARNT dimerization partner, the aryl hydrocarbon receptor (AHR), was monitored. Induction of CYP1A1, CYP1A2, and UGT1*06 mRNAs by the AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin was absent in livers of Arnt-floxed/Mx1-Cre mice treated with polyinosinic-polycytidylic. These data demonstrate that ARNT is required for AHR function in the intact animal. Partial deletion of the Arnt allele was found in kidney, heart, intestine, and lung. Despite more than 80% loss of the ARNT expression in lung, maximal induction of CYP1A1 was found, indicating that the expression level of ARNT is not limiting to AHR signaling. Cobalt chloride induction of the glucose transporter-1 and heme oxygenase-1 mRNAs was also markedly abrogated in mice lacking ARNT expression, suggesting an inhibition of HIF-1alpha activity. These studies establish a critical role for ARNT in AHR and HIF-1alpha signal transduction in the intact mouse.  相似文献   

2.
3.
4.
The CYP1A1, CYP1A2, and CYP1B1 enzymes are inducible by benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); metabolism of BaP by these enzymes leads to electrophilic intermediates and genotoxicity. Throughout the gastrointestinal (GI) tract, we systematically compared basal and inducible levels of the CYP1 mRNAs by Q-PCR, and localized the CYP1 proteins by immunohistochemistry. Cyp1(+/+) wild-type were compared with the Cyp1a1(-/-), Cyp1a2(-/-), and Cyp1b1(-/-) single-knockout and Cyp1a1/1b1(-/-) and Cyp1a2/1b1(-/-) double-knockout mice. Oral BaP was compared with intraperitoneal TCDD. In general, maximal CYP1A1 mRNA levels were 3-10 times greater than CYP1B1, which were 3-10 times greater than CYP1A2 mRNA levels. Highest inducible concentrations of CYP1A1 and CYP1A2 occurred in proximal small intestine, whereas the highest basal and inducible levels of CYP1B1 mRNA occurred in esophagus, forestomach, and glandular stomach. Ablation of either Cyp1a2 or Cyp1b1 gene resulted in a compensatory increase in CYP1A1 mRNA - but only in small intestine. Also in small intestine, although BaP- and TCDD-mediated CYP1A1 inductions were roughly equivalent, oral BaP-mediated CYP1A2 mRNA induction was approximately 40-fold greater than TCDD-mediated CYP1A2 induction. CYP1B1 induction by TCDD in Cyp1(+/+) and Cyp1a2(-/-) mice was 4-5 times higher than that by BaP; however, in Cyp1a1(-/-) animals CYP1B1 induction by TCDD or BaP was approximately equivalent. CYP1A1 and CYP1A2 proteins were generally localized nearer to the lumen than CYP1B1 proteins, in both squamous and glandular epithelial cells. These GI tract data suggest that the inducible CYP1A1 enzyme, both in concentration and in location, might act as a "shield" in detoxifying oral BaP and, hence, protecting the animal.  相似文献   

5.
6.
7.
The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein (AIP) and aryl hydrocarbon receptor nuclear translocator (ARNT). The resulting intrahepatic portosystemic shunts (IHPSS) are frequently diagnosed in specific dog breeds, such as the Irish wolfhound. We compared the expression of components of the AHR pathway in healthy Irish wolfhounds and dogs with IHPSS. To this end, we analyzed the mRNA expression in the liver of AHR,AIP, ARNT, and other genes involved in this pathway, namely, those for aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), hypoxia inducible factor 1alpha (HIF1A), heat shock protein 90AA1 (HSP90AA1), cytochromes P450 (CYP1A1, CYP1A2, and CYP1B1), vascular endothelial growth factor A (VEGFA), nitric oxide synthesase 3 (NOS3), and endothelin (EDN1). The observed low expression of AHR mRNA in the Irish wolfhounds is in associated with a LINE-1 insertion in intron 2, for which these dogs were homozygous. Down regulation in Irish wolfhounds was observed for AIP, ARNT2, CYP1A2, CYP1B1 and HSP90AA1 expression, whereas the expression of HIF1A was increased. Immunohistochemistry revealed lower levels of AHR, HIF1A, and VEGFA protein in the nucleus and lower levels of ARNT and HSP90AA1 protein in the cytoplasm of the liver cells of Irish wolfhounds. The impaired expression of HSP90AA1 could trigger the observed differences in mRNA and protein levels and therefore explain the link between two very different functions of AHR: regulation of the closure of the ductus venosus and the response to toxins.  相似文献   

8.
9.
The clinical literature strongly suggests that bone healing in cigarette smokers is impaired. Since cigarette smoke (CS) contains numerous polycyclic aromatic hydrocarbons (PAHs), and since dioxins impair bone formation in vivo via the Aryl Hydrocarbon Receptor (AHR), we investigated the impact of PAH/AHR signaling on chondrogenesis and on healing in a mouse tibial fracture model. We established that CS activates AHR signaling in fractures by up-regulating the AHR target gene cytochrome p4501A1 (Cyp1A1). For in vitro studies, we employed the mouse limb bud micromass chondrogenesis model. After confirming that chondrocytes express AHR during differentiation, we treated cells with a prototypical PAH found in CS, benzo(a)pyrene (BaP), or cigarette smoke extract (CSE). Both BaP and CSE strongly inhibited chondrogenesis in mesenchymal cells generated from E11 limb buds, with BaP also accelerating chondrocyte hypertrophy in cultures generated from E12 limb buds. Detection of DNA adducts in the BaP-treated cultures suggests that the distinct phenotypic effects of BaP may be due to the formation of reactive metabolites. Blockade of AHR signaling with the AHR antagonist MNF reverses the effects of BaP, but not CSE, suggesting that CSE inhibition of chondrogenesis is AHR-independent. Correlating with these results, tibial fracture calluses from BaP-treated mice were smaller and contained less mineralized tissue than vehicle controls. Overall, BaP is identified as a potent inhibitor of chondrogenesis in vitro with correlated effects on fracture healing similar to those of CS itself, suggesting a basis for PAHs as key compounds in the influence of CS on fracture repair.  相似文献   

10.
11.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, environmental contaminants that pose a potential risk to fish populations. Both field and laboratory studies suggest that exposure of the early life stages of fish to PAH can mimic the embryotoxic effects of the planar halogenated hydrocarbons (PHHs), the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin. PHH toxicity is mediated by the aryl hydrocarbon receptor (AHR) and PHH potency is predicted by its AHR-binding affinity and CYP1A induction potency. However, the role of the AHR, if any, in mediating the developmental effects of PAH to fish remains unknown. In this study we looked at the AHR binding affinity of a test set of PAH that had been previously ranked for their potency for inducing teleost CYP1A. PAH that induced CYP1A inhibited [3H]TCDD binding to in vitro-expressed AHRs from rainbow trout and the AHR expressed in PLHC-1 fish hepatoma cells. Generally, the relative rank order for AHR binding affinity predicted the rank order of these same PAH for inducing CYP1A reported in other studies. There was a strong, positive relationship between binding to the PLHC-1 AHR (stimulus) and the EC50s for CYP1A induction (response) in whole juvenile trout and in RTL-W1 cells, but EC50s were much higher than expected for a 1:1 stimulus/response relationship. These data show that the ability of PAH to bind to teleost AHR predicts PAH potency for CYP1A induction. If PAH toxicity is receptor-mediated and predicted by induction potencies, we will have a powerful mechanistic-based tool for rapidly assessing the risk of toxicity to fish of PAH from any source.  相似文献   

12.
13.
14.
Six loci containing genes involved in the dioxin metabolism (ARNT, AHR, CYP1A1, CYP1A2, CYP1B1 and AHRR) were assigned, for the first time, to cattle (Bos taurus, 2n = 60, BTA), river buffalo (Bubalus bubalis, 2n = 50, BBU), sheep (Ovis aries, 2n = 54, OAR) and goat (Capra hircus, 2n = 60, CHI) chromosomes by comparative FISH-mapping and R-banding using bovine BAC-clones. The following chromosome locations were found: ARNT to BTA3q21, BBU6q21, OAR1p21 and CHI3q21, AHR to BTA4q15, BBU8q15, OAR4q15 and CHI4q15; CYP1A1 and CYP1A2 to BTA21q17, BBU20q17, OAR18q17 and CHI21q17; CYP1B1 to BTA11q16, BBU12q22, OAR3p16 and CHI11q16, AHRR to BTA20q24, BBU19q24, OAR16q24 and CHI20q24. All loci were mapped at the same homoeologous chromosomes and chromosome bands of the four bovid species. Comparisons with corresponding human locations were also reported.  相似文献   

15.
16.
Previous studies have shown that cytochrome P450 1A1 (CYP1A1), CYP1B1, and prostaglandin-endoperoxide synthase (PTGS2) are inducible by benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), and all three metabolize BaP to reactive DNA-binding intermediates and excreted products. Because these three enzymes show differing patterns of basal levels, inducibility, and tissue-specific expression, animal studies are necessary to delineate the role of CYP1A1 in BaP-mediated toxicity. In mice receiving large daily doses of BaP (500 mg/kg i.p.), Cyp1a1(-/-) knockout mice are protected by surviving longer than Cyp1a1(+/-) heterozygotes. We found that a single 500 mg/kg dose of BaP induces hepatic CYP1A1 mRNA, protein, and enzyme activity in Cyp1a1(+/-) but not in Cyp1a1(-/-) mice; TCDD pretreatment increases further the CYP1A1 in Cyp1a1(+/-) but not Cyp1a1(-/-) mice. Although a single 500 mg/kg dose of BaP was toxic to Cyp1a1(+/-) mice (serum liver enzyme elevated about 2-fold above control levels at 48 h), Cyp1a1(-/-) mice displayed no hepatotoxicity. Unexpectedly, we found 4-fold higher BaP-DNA adduct levels in Cyp1a1(-/-) than in Cyp1a1(+/-) mice; TCDD pretreatment lowered the levels of BaP-DNA adducts in both genotypes, suggesting the involvement of other TCDD-inducible detoxification enzymes. BaP was cleared from the blood much faster in Cyp1a1(+/-) than Cyp1a1(-/-) mice. Our results suggest that absence of the CYP1A1 enzyme protects the intact animal from BaP-mediated liver toxicity and death, by decreasing the formation of large amounts of toxic metabolites, whereas much slower metabolic clearance of BaP in Cyp1a1(-/-) mice leads to greater formation of BaP-DNA adducts.  相似文献   

17.
The aryl hydrocarbon receptor (AHR) contains signals for both nuclear import and nuclear export (NES). The purpose of the studies in this report was to determine the relationship between the nuclear export of the AHR and AHR-mediated gene regulation. Blockage of nuclear export in HepG2 cells with leptomycin B (LMB) resulted in increased levels of AHR-AHR nuclear translocator (ARNT) complex in the nucleus and correlative reductions in agonist-stimulated AHR degradation. However, LMB exposure inhibited agonist-mediated induction of numerous AHR-responsive reporter genes by 75 to 89% and also inhibited induction of endogenous CYP1A1. LMB did not transform the AHR to a ligand binding species or affect activation by TCDD (2, 3,7,8-tetrachlorodibenzo-p-dioxin). Mutagenesis of leucines 66 and 71 of the putative AHR NES resulted in a protein with reduced function in dimerization to ARNT and binding to DNA, while alanine substitution at leucine 69 (AHR(A69)) resulted in an AHR that bound with ARNT and associated with DNA. AHR(A69) protein injected directly into the nuclei of E36 cells remained nuclear following 6 h of agonist stimulation. In transient-transfection assays, AHR(A69) accumulated within the nucleus was not degraded efficiently following agonist exposure. Finally, AHR(A69) supported induction of AHR-responsive reporter genes in an agonist-dependent manner. These findings show that it is possible to generate an AHR protein defective in nuclear export that is functional in agonist-mediated gene induction. This implies that the negative effect of LMB on agonist-mediated gene induction is independent of the nuclear export of the AHR.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号