首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims:  The major objective of this study was to determine the effects of low levels of Escherichia coli O157:H7 contamination on plant by monitoring the survival of the pathogen on the rhizosphere and leaf surfaces of lettuce during the growth process.
Methods and Results:  Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7 in the rhizosphere and leaf surfaces after planting. Real-time PCR assays were designed to amplify the stx 1, stx 2 and the eae genes of E. coli O157:H7. The detection limit for E. coli O157:H7 quantification by real-time PCR was 2·4 × 103 CFU g−1 of starting DNA in rhizosphere and phyllosphere samples and about 102 CFU g−1 by plate count. The time for pathogens to reach detection limits on the leaf surface by plate counts was 7 days after planting in comparison with 21 days in the rhizosphere. However, real-time PCR continued to detect stx 1, stx 2 and the eae genes throughout the experimental period.
Conclusion:  Escherichia coli O157:H7 survived throughout the growth period as was determined by real-time PCR and by subsequent enrichment and immunomagnetic separation of edible part of plants.
Significance and impact of the Study:  The potential presence of human pathogens in vegetables grown in soils contaminated with E. coli O157:H7 is a serious problem to our national food supply as the pathogen may survive on the leaf surface as they come in contact with contaminated soil during germination.  相似文献   

2.
3.
To investigate the potential transfer of Escherichia coli O157:H7 from contaminated manure to fresh produce, lettuce seedlings were transplanted into soil fertilized with bovine manure which had been inoculated with approximately 104 CFU g−1 E. coli O157:H7. The lettuce was grown for approximately 50 days in beds in climate-controlled rooms in a greenhouse. As the bacterium was not detected in the edible parts of the lettuce, the outer leaves of the lettuce, or the lettuce roots at harvest it was concluded that transmission of E. coli O157:H7 from contaminated soil to lettuce did not occur. The pathogen persisted in the soil for at least 8 weeks after fertilizing but was not detected after 12 weeks. Indigenous E. coli was detected only sporadically on the lettuce at harvest, and enterococci were not detected at all. The numbers of enterococci declined more rapidly than those of E. coli in the soil. Pseudomonas fluorescens, which inhibited growth of E. coli O157:H7 in vitro, was isolated from the rhizosphere.  相似文献   

4.
5.
Leafy green produce has been associated with numerous outbreaks of foodborne illness caused by strains of Escherichia coli O157:H7. While the amounts of culturable E. coli O157:H7 rapidly decline after introduction onto lettuce in the field, it remains to be determined whether the reduction in cell numbers is due to losses in cell viability, cell injury and a subsequent inability to be detected by standard laboratory culturing methods, or a lack of adherence and hence rapid removal of the organism from the plants during application. To assess which of these options is most relevant for E. coli O157:H7 on leafy green produce, we developed and applied a propidium monoazide (PMA) real-time PCR assay to quantify viable (with PMA) and total (without PMA) E. coli O157:H7 cells on growth chamber and field-grown lettuce. E. coli O157:H7, suspended in 0.1% peptone, was inoculated onto 4-week-old lettuce plants at a level of approximately 106 CFU/plant. In the growth chamber at low relative humidity (30%), culturable amounts of the nontoxigenic E. coli O157:H7 strain ATCC 700728 and the virulent strain EC4045 declined 100 to 1000-fold in 24 h. Fewer E. coli O157:H7 cells survived when applied onto plants in droplets with a pipette compared with a fine spray inoculation. Total cells for both strains were equivalent to inoculum levels for 7 days after application, and viable cell quantities determined by PMA real-time PCR were approximately 104 greater than found by colony enumeration. Within 2 h after application onto plants in the field, the number of culturable E. coli ATCC 700728 was reduced by up to 1000-fold, whereas PCR-based assessments showed that total cell amounts were equivalent to inoculum levels. These findings show that shortly after inoculation onto plants, the majority of E. coli O157:H7 cells either die or are no longer culturable.  相似文献   

6.
Several outbreaks of Escherichia coli O157:H7 infections have been associated with minimally processed leafy vegetables in the United States. Harvesting and processing cause plant tissue damage. In order to assess the role of plant tissue damage in the contamination of leafy greens with E. coli O157:H7, the effect of mechanical, physiological, and plant disease-induced lesions on the growth of this pathogen on postharvest romaine lettuce was investigated. Within only 4 h after inoculation, the population sizes of E. coli O157:H7 increased 4.0-, 4.5-, and 11.0-fold on lettuce leaves that were mechanically bruised, cut into large pieces, and shredded into multiple pieces, respectively. During the same time, E. coli O157:H7 population sizes increased only twofold on leaves that were left intact after harvest. Also, the population size of E. coli O157:H7 was 27 times greater on young leaves affected by soft rot due to infection by Erwinia chrysanthemi than on healthy middle-aged leaves. Confocal microscopy revealed that leaf tip burn lesions, which are caused by a common physiological disorder of lettuce, harbored dense populations of E. coli O157:H7 cells both internally and externally. Investigation of the colonization of cut lettuce stems by E. coli O157:H7 showed that the pathogen grew 11-fold over 4 h of incubation after its inoculation onto the stems, from which large amounts of latex were released. The results of this study indicate that plant tissue damage of various types can promote significant multiplication of E. coli O157:H7 over a short time and suggest that harvesting and processing are critical control points in the prevention or reduction of E. coli O157:H7 contamination of lettuce.  相似文献   

7.
8.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

9.
The StcE zinc metalloprotease is secreted by enterohemorrhagic Escherichia coli (EHEC) O157:H7 and contributes to intimate adherence of this bacterium to host cells, a process essential for mammalian colonization. StcE has also been shown to localize the inflammatory regulator C1 esterase inhibitor (C1-INH) to cell membranes. We tried to more fully characterize StcE activity to better understand its role in EHEC pathogenesis. StcE was active at pH 6.1 to 9.0, in the presence of NaCl concentrations ranging from 0 to 600 mM, and at 4 degrees C to 55 degrees C. Interestingly, antisera against StcE or C1-INH did not eliminate StcE cleavage of C1-INH. Treatment of StcE with the proteases trypsin, chymotrypsin, human neutrophil elastase, and Pseudomonas aeruginosa elastase did not eliminate StcE activity against C1-INH. After StcE was kept at 23 degrees C for 65 days, it exhibited full proteolytic activity, and it retained 30% of its original activity after incubation for 8 days at 37 degrees C. Together, these results show the StcE protease is a stable enzyme that is probably active in the environment of the colon. Additionally, k(cat)/K(m) data showed that StcE proteolytic activity was 2.5-fold more efficient with the secreted mucin MUC7 than with the complement regulator C1-INH. This evidence supports a model which includes two roles for StcE during infection, in which StcE acts first as a mucinase and then as an anti-inflammatory agent by localizing C1-INH to cell membranes.  相似文献   

10.
Direct PCR detection of Escherichia coli O157:H7   总被引:2,自引:0,他引:2  
AIMS: This paper reports a simple, rapid approach for the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC). METHODS AND RESULTS: Direct PCR (DPCR) obviates the need for the recovery of cells from the sample or DNA extraction prior to PCR. Primers specific for Stx-encoding genes stx1 and stx2 were used in DPCR for the detection of E. coli O157:H7 added to environmental water samples and milk. CONCLUSIONS: PCR reactions containing one cell yielded a DPCR product. SIGNIFICANCE AND IMPACT OF THE STUDY: This should provide an improved method to assess contamination of environmental and other samples by STEC and other pathogens.  相似文献   

11.
There are 29 E. coli genome sequences available, mostly related to studies of species diversity or mode of pathogenicity, including two genomes of the well-known O157:H7 clone. However, there have been no genome studies of closely related clones aimed at exposing the details of evolutionary change. Here we sequenced the genome of an O55:H7 strain, closely related to the major pathogenic O157:H7 clone, with published genome sequences, and undertook comparative genomic and proteomic analysis. We were able to allocate most differences between the genomes to individual mutations, recombination events, or lateral gene transfer events, in specific lineages. Major differences include a type II secretion system present only in the O55:H7 chromosome, fewer type III secretion system effectors in O55:H7, and 19 phage genomes or phagelike elements in O55:H7 compared to 23 in O157:H7, with only three common to both. Many other changes were found in both O55:H7 and O157:H7 lineages, but in general there has been more change in the O157:H7 lineages. For example, we found 50% more synonymous mutational substitutions in O157:H7 compared to O55:H7. The two strains also diverged at the proteomic level. Mutational synonymous SNPs were used to estimate a divergence time of 400 years using a new clock rate, in contrast to 14,000 to 70,000 years using the traditional clock rates. The same approaches were applied to three closely related extraintestinal pathogenic E. coli genomes, and similar levels of mutation and recombination were found. This study revealed for the first time the full range of events involved in the evolution of the O157:H7 clone from its O55:H7 ancestor, and suggested that O157:H7 arose quite recently. Our findings also suggest that E. coli has a much lower frequency of recombination relative to mutation than was observed in a comparable study of a Vibrio cholerae lineage.  相似文献   

12.
AIMS: To assess whether the persistence of Escherichia coli O157:H7 in soil amended with cattle slurry and ovine stomach content waste is affected by the presence of a maize rhizosphere. METHODS AND RESULTS: Cattle slurry and ovine stomach content waste were inoculated with E. coli O157:H7. Wastes were then applied to soil cores with and without established maize plants. The pathogen survived in soil for over 5 weeks, although at significantly greater numbers in soil receiving stomach content waste in comparison to cattle slurry. Persistence of the pathogen in soil was unaffected by the presence of a rhizosphere. CONCLUSIONS: Other factors may be more influential in regulating E. coli O157:H7 persistence in waste-amended soil than the presence or absence of a rhizosphere; however, waste type did have significant affect on the survival of E. coli O157:H7 in such soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Escherichia coli O157:H7 can be present within animal-derived organic wastes that are routinely spread on land. Introduced measures with regards to such waste disposal may decrease exposure to the organism; however, the persistence of E. coli O157:H7 for considerable periods in waste-amended soil may still pose some risk for both human and animal infection. This study has shown that whilst survival of E. coli O157:H7 in waste-amended soil is not significantly affected by the presence or absence of a maize rhizosphere; it may vary significantly with waste type. This may have implications for land and waste management.  相似文献   

13.

Background:

Escherichia coli O157:H7 is one cause of acute bacterial gastroenteritis, which can be devastating in outbreak situations. We studied the risk of cardiovascular disease following such an outbreak in Walkerton, Ontario, in May 2000.

Methods:

In this community-based cohort study, we linked data from the Walkerton Health Study (2002–2008) to Ontario’s large healthcare databases. We included 4 groups of adults: 3 groups of Walkerton participants (153 with severe gastroenteritis, 414 with mild gastroenteritis, 331 with no gastroenteritis) and a group of 11 263 residents from the surrounding communities that were unaffected by the outbreak. The primary outcome was a composite of death or first major cardiovascular event (admission to hospital for acute myocardial infarction, stroke or congestive heart failure, or evidence of associated procedures). The secondary outcome was first major cardiovascular event censored for death. Adults were followed for an average of 7.4 years.

Results:

During the study period, 1174 adults (9.7%) died or experienced a major cardiovascular event. Compared with residents of the surrounding communities, the risk of death or cardiovascular event was not elevated among Walkerton participants with severe or mild gastroenteritis (hazard ratio [HR] for severe gastroenteritis 0.74, 95% confidence interval [CI] 0.38–1.43, mild gastroenteritis HR 0.64, 95% CI 0.42–0.98). Compared with Walkerton participants who had no gastroenteritis, risk of death or cardiovascular event was not elevated among participants with severe or mild gastroenteritis.

Interpretation:

There was no increase in the risk of cardiovascular disease in the decade following acute infection during a major E. coli O157:H7 outbreak.Escherichia coli O157:H7 is one cause of acute bacterial gastroenteritis, causing 63 000 infections each year and 12 major outbreaks since 2006 in the United States alone.1,2 This strain was most recently implicated in the outbreak involving beef from XL Foods (September 2012), with 17 confirmed cases across Canada.3 A similar enterohemorrhagic strain E. coli O104:H4 was responsible for an outbreak in Germany in May 2011, causing 3792 cases of gastroenteritis and 43 deaths.4,5Most patients fully recover from acute gastroenteritis caused by E. coli. However, such an illness may predispose patients to long-term disease. Shiga toxin is produced by E. coli O157:H7; this toxin damages the microvasculature of the kidneys leading to hypertension613 and directly damages the systemic vasculature.1416 Infected people may progress from a state of acute inflammation of the vasculature to subclinical chronic inflammation, which could promote atherosclerosis.1720In Walkerton, Ontario, in May 2000, heavy rains transported bovine fecal matter into the town’s well, contaminating the inadequately chlorinated municipal water supply with E. coli O157:H7.21 Over 2300 people developed acute gastroenteritis, and 7 people died.22 The unique circumstances of this outbreak provided a rare opportunity to study the natural history following exposure to this pathogen in a single cohort.23 Other outbreaks have been geographically dispersed, making it difficult to track cases.24,25In Walkerton, affected individuals were followed annually in a clinic to assess their long-term outcomes (Walkerton Health Study, 2002–2008). We previously reported that adults who experienced acute gastroenteritis during the outbreak had a higher than expected incidence of hypertension, chronic kidney disease and self-reported cardiovascular disease in follow-up.23 However, 46% of participants were lost to follow-up by the end of the study, and there were limitations associated with the assessment of cardiovascular disease by participant recall. Thus, we conducted an expanded and extended follow-up study, linking the Walkerton study data to Ontario’s health care databases. Our objective was to more accurately determine the 10-year risk of major cardiovascular events after exposure to E. coli O157:H7.  相似文献   

14.
The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased.  相似文献   

15.
AIMS: To quantify the antibacterial properties of five essential oils (EO) on a non-toxigenic strain of Escherichia coli O157:H7 in the presence and absence of a stabilizer and an emulsifier and at three different temperatures. METHODS AND RESULTS: Five EOs known to exhibit antibacterial properties were screened by disc diffusion assay and the most active were selected for further study in microdilution colorimetric assays. Oregano (Origanum vulgare) and thyme (Thymus vulgaris; light and red varieties) EO had the strongest bacteriostatic and bactericidal properties, followed by bay (Pimenta racemosa) and clove bud (Eugenia caryophyllata synonym: Syzygium aromaticum) EO. Oregano oil was colicidal at 625 microl l(-1) at 10, 20 and 37 degrees C. The addition of 0.05% (w/v) agar as stabilizer reinforced the antibacterial properties, particularly at 10 degrees C, whereas 0.25% (w/v) lecithin reduced antibacterial activity. Scanning electron micrographs showed extensive morphological changes to treated cells. CONCLUSIONS: Oregano and thyme EO possess significant in vitro colicidal and colistatic properties, which are exhibited in a broad temperature range and substantially improved by the addition of agar as stabilizer. Bay and clove bud EO are less active. Lecithin diminished antibacterial properties. The bactericidal concentration of oregano EO irreversibly damaged E. coli O157:H7 cells within 1 min. SIGNIFICANCE AND IMPACT OF THE STUDY: Oregano and light thyme EO, particularly when enhanced by agar stabilizer, may be effective in reducing the number or preventing the growth of E. coli O157:H7 in foods.  相似文献   

16.
An amphiphilic, cationic peptide composed of eight leucines and six lysines was synthesized by solid phase peptide synthesis (SPPS). The synthetic peptide was bactericidal within 10 min at concentrations as low as 3 microg ml - 1 against mid-exponential Escherichia coli O157:H7 suspended in buffer. Concentrations of 25 microg ml - 1 caused up to 7 log10 cfu ml - 1 reductions. When tested against E. coli O157:H7 grown in TSB, the peptide was bactericidal and bacteriostatic at concentrations of 50 and 25 microg ml - 1, respectively. An inhibitory effect was also observed against stationary phase cells. The synthetic peptide caused the release of u.v.-absorbing materials from the E. coli O157:H7 as well as an increase in its O.D.600 nm. Intracellular K+ and ATP depletion were also observed. These results suggest that the peptide increased the cell membrane permeability but it did not lyse the cells.  相似文献   

17.
Ruminants, and to a lesser extent monogastric farm animals, are known to be natural reservoirs of Escherichia coli O157:H7, and contact with contaminated faeces has been linked to human infection. This study used a nontoxigenic, chromosomally marked, lux reporter strain to compare the persistence and activity (bioluminescence) of E. coli O157:H7 over 21 days in the faecal liquor of five farm animals: horse, sheep, cow, pig and piglet. Samples were inoculated with the lux E. coli O157:H7 (7.82 log CFU mL(-1)) and stored at 20 +/- 1 degrees C. The organism was recovered from all samples throughout the experimental period, although lower numbers were recovered from horse faecal liquor relative to all other types (P<0.001). The organisms' activity declined in all samples over time and no luminescence could be detected in any sample 21 days postinoculation. However, activity did increase greatly within pig and piglet faeces during initial stages of monitoring and overall luminescence was greater in piglet samples compared with all other samples (P<0.001). This is the first study to demonstrate how both the persistence and metabolic activity of E. coli O157:H7 notably varies within a range of ruminant and nonruminant animal faeces. Further research is needed to elucidate the factors that govern differential persistence and metabolic activity of E. coli O157:H7 within such matrices.  相似文献   

18.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

19.
The objective of this study was to determine the time period that Escherichia coli O157:H7 survives on the hides of cattle. Extensive research has been conducted and is ongoing to identify and develop novel preharvest intervention strategies to reduce the presence of E. coli O157:H7 on live cattle and subsequent transfer to processed carcasses. If a reduction of E. coli O157:H7 levels in feces can be achieved through preharvest intervention, it is not known how long it would take for such reductions to be seen on the hide. In the study presented herein, three trials were conducted to follow E. coli O157:H7 hide prevalence over time. For each trial, 36 animals were housed in individual stanchions to minimize or prevent hide contamination events. Through prevalence determination and isolate genotyping with pulsed-field gel electrophoresis, survival of E. coli O157:H7 on the hides of live cattle was determined to be short lived, with an approximate duration of 9 days or less. The results of this study suggest that any preharvest interventions that are to be administered at the end of the finishing period will achieve maximum effect in reducing E. coli O157:H7 levels on cattle hides if given 9 days before the cattle are presented for processing. However, it should be noted that interventions reducing pathogen shedding would also contribute to decreasing hide contamination through lowering the contamination load of the processing plant lairage environment, regardless of the time of application.  相似文献   

20.
Escherichia coli O157:H7 cells survived for up to 77, >226, and 231 days in manure-amended autoclaved soil held at 5, 15, and 21 degrees C, respectively. Pathogen populations declined more rapidly in manure-amended unautoclaved soil under the same conditions, likely due to antagonistic interactions with indigenous soil microorganisms. E. coli O157:H7 cells were inactivated more rapidly in both autoclaved and unautoclaved soils amended with manure at a ratio of 1 part manure to 10 parts soil at 15 and 21 degrees C than in soil samples containing dilute amounts of manure. The manure-to-soil ratio, soil temperature, and indigenous microorganisms of the soil appear to be contributory factors to the pathogen's survival in manure-amended soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号