首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In response to intense enemy selection, immature folivorous insects have evolved elaborate, multi-trait defense arsenals. How enemies foster trait diversification and arsenal assembly depends on which selective mode they impose: whether different enemies select for the same defense or exert conflicting selection on a prey species. Theory has long supposed that the selective advantage of a defense depends on its efficacy against a broad spectrum of enemies, which implies that predator selection is more diffuse than pairwise. Here, we use the multi-trait defense arsenal of the tortoise beetle, Acromis sparsa, which consists of shields, gregariousness and maternal guarding to test whether: (1) diverse enemies have selected for narrowly targeted defenses in the Acromis lineage; (2) newer traits out-performed older ones or vice versa, and; (3) if selection by different enemies results in positive (escalation) trends in defense effectiveness. Because their defenses could be modified or ablated, individuals were rendered differentially protected, and their survival was quantified in a long-term field study. Exclusion experiments evaluated defense efficacy against particular enemy guilds. Logit regression revealed that: (1)no single trait increased survival against the entire enemy suite; (2)trait efficacy was strongly correlated with a particular enemy, consistent with narrow targeting; (3)traits lacked strong cross-resistance among enemies; (4)traits performed synergistically, consistent with the idea of escalation, and; (5)traits interacted negatively to decrease survival, indicative of performance trade-offs. From collation of the phylogenetic histories of arsenal and enemy community assembly we hypothesize that older traits performed better against older enemies and that patterns of both trait and enemy accumulation are consistent with defense escalation. Trade-offs and lack of cross-resistance among defenses imply that enemy selection has been conflicting at the guild level and that negative functional interactions among defenses have fostered the evolution of a defense arsenal of increasing complexity.  相似文献   

2.
Luong LT  Polak M 《Heredity》2007,99(6):632-640
Costs of resistance are expected to contribute to the maintenance of genetic variation for resistance in natural host populations. In the present study, we experimentally test for genetic trade-offs between parasite resistance and larval competitive ability expressed under varying levels of crowding and temperature. Artificial selection for increased behavioral resistance was applied against an ectoparasitic mite (Macrocheles subbadius) in replicate lines of the fruit fly Drosophila nigrospiracula. We then measured correlated responses to selection in larval competitive ability by contrasting replicate selected and control (unselected) lines in the absence of parasitism. Experiments were conducted under variable environmental conditions: two temperatures and three levels of larval density. Our results reveal a negative genetic correlation between resistance and larval-adult survival under conditions of moderate and severe intra-specific competition. At both low and high temperature, percent emergence was significantly higher among control lines than selected lines. This divergence in larval competitive ability was magnified under high levels of competition, but only at low temperature. Hence, the interaction between selection treatment and larval density was modified by temperature. As predicted, larvae experiencing medium and high levels of competition exhibited an overall reduction in female body size compared to larvae at low levels of competition. Female flies emerging from selected lines were significantly smaller than those females from control lines, but this effect was only significant under conditions of moderate to severe competition. These results provide evidence of environment-dependent trade-offs between ectoparasite resistance and larval competitive ability, a potential mechanism maintaining genetic polymorphism for resistance.  相似文献   

3.
Gene flow that hampers local adaptation can constrain species distributions and slow invasions. Predation as an ecological factor mainly limits prey species ranges, but a richer array of possibilities arises once one accounts for how predation alters the interplay of gene flow and selection. We extend previous single-species theory on the interplay of demography, gene flow, and selection by investigating how predation modifies the coupled demographic-evolutionary dynamics of the range and habitat use of prey. We consider a model for two discrete patches and a complementary model for species along continuous environmental gradients. We show that predation can strongly influence the evolutionary stability of prey habitat specialization and range limits. Predators can permit prey to expand in habitat or geographical range or, conversely, cause range collapses. Transient increases in predation can induce shifts in prey ranges that persist even if the predator itself later becomes extinct. Whether a predator tightens or loosens evolutionary constraints on the invasion speed and ultimate size of a prey range depends on the predator effectiveness, its mobility relative to its prey, and the prey's intraspecific density dependence, as well as the magnitude of environmental heterogeneity. Our results potentially provide a novel explanation for lags and reversals in invasions.  相似文献   

4.
Today, plants using C4 photosynthesis are widespread and important components of major tropical and subtropical biomes, but the events that led to their evolution and success started billions of years ago (bya). A CO2-fixing enzyme evolved in the early Earth atmosphere with a tendency to confuse CO2 and O2 molecules. The descendants of early photosynthetic organisms coped with this property in the geological eras that followed through successive fixes, the latest of which is the addition of complex CO2-concentrating mechanisms such as C4 photosynthesis. This trait was assembled from bricks available in C3 ancestors, which were altered to fulfill their new role in C4 photosynthesis. The existence of C4-suitable bricks probably determined the lineages of plants that could make the transition to C4 photosynthesis, highlighting the power of contingency in evolution. Based on the latest findings in C4 research, we present the evolutionary tale of C4 photosynthesis, with a focus on the general evolutionary phenomena that it so wonderfully exemplifies.  相似文献   

5.
A classic community assembly hypothesis is that all guilds must be represented before additional species from any given guild enter the community. We conceptually extend this hypothesis to continuous functional traits, refine the hypothesis with an eco-evolutionary model of interaction network community assembly, and compare the resultant continuous trait assembly rule to empirical data. Our extension of the “guild assembly rule” to continuous functional traits was rejected, in part, because the eco-evolutionary model predicted trait assembly to be characterized by the expansion of trait space and trait/species sorting within trait space. Hence, the guild rule may not be broadly applicable. A “revised” assembly rule did, however, emerge from the eco-evolutionary model: as communities assemble, the range in trait values will increase to a maximum and then remain relatively constant irrespective of further changes in species richness. This rule makes the corollary prediction that the trait range will, on average, be a saturating function of species richness. To determine if the assembly rule is at work in natural communities, we compared this corollary prediction to empirical data. Consistent with our assembly rule, trait “space” (broadly defined) commonly saturates with species richness. Our assembly rule may thus represent a general constraint placed on community assembly. In addition, taxonomic scale similarly influences the predicted and empirically observed relationship between trait “space” and richness. Empirical support for the model’s predictions suggests that studying continuous functional traits in the context of eco-evolutionary models is a powerful approach for elucidating general processes of community assembly.  相似文献   

6.
Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or "recognize patterns" in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is "staying in patches". In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape.  相似文献   

7.
The leaf anatomy of the rhizomatous Iris species with ensiform leaves and the related genera Pardanthopsis and Belamcanda is described. Their isobilateral leaves may or may not have a pseudo-dorsiventral structure. Variable characters of their leaf blades include: outline in transverse section, height and shape of papillae, form and structure of stomata, transverse section outline of marginal fibre strands and sclerenchy matous inner bundle sheath at phloem and xylem poles, forms of mesophyll arrangement, mesophyll structure and air canals, vascular bundle arrangement and the detailed structure of the larger vascular bundles, distribution of tannin, size and distribution of crystals. The taxonomic and ecological significance of these characters has been evaluated.
The anatomical characteristics of 25 supraspecific taxa in three genera are presented and compared in tables. The relationships and evolutionary position of these taxa are discussed. Each of the three subgroups within Iris appears to be correlated with a syndrome of anatomical characters. Some species currently of uncertain taxonomic position are discussed, and their classification based on anatomical data is suggested.
Some characters related to xeromorphy or helomorphy are mentioned.  相似文献   

8.
9.
The life-extending effects of diet restriction are well documented. One evolutionary model that accounts for this widespread conservation is the resource allocation model, where the selected individuals are those that can delay reproduction during periods of resource limitation. In this study, we use closely related species of a model organism, Daphnia, with widely divergent lifespans to address the relationship between diet restriction and longevity and assess whether the relationships are owing to trade-offs between reproductive and somatic investment. Specifically, we conducted a common garden experiment and constructed reaction norms for lifespan, fecundity, and body size as a function of food concentration. Our study provides evidence that the short-lived species in our study, D. pulex, shows the classically observed relationship of enhanced lifespan in response to reduced diet intake, but does not divert resources to somatic maintenance at the expense of reproduction during chronic diet restriction. In contrast, we find no evidence that the long-lived species in our study, D. pulicaria, gains any life-extending effects through diet restriction. Combined, our results provide evidence that the resource allocation model is not sufficient to explain the evolution of diet-mediated lifespan plasticity.  相似文献   

10.
 Black and white spruce (Picea mariana and P. glauca) exhibit a striking micro-geographic distribution pattern at the southern edge of the boreal forest. Black spruce grows in flooded nutrient-poor muskegs, while white spruce is found primarily on drier upland sites, and the two rarely form mixed stands. In an attempt to characterize the physiological and, hence, mechanistic basis of this pattern, we sampled five adjacent populations of black and white spruce from northern British Columbia and measured a suite of physiological and allocative characteristics, and associated trade-offs, that may be important to survival in habitats limited in nutrient or water availability. Two laboratory experiments were conducted: a greenhouse dry-down experiment to assess relative degree of drought tolerance; and a 2×2 nested factorial experiment in which seedlings were subjected to varying water and nitrogen regimes for approximately 16 weeks. White spruce was more drought-tolerant (i.e., maintained positive net photosynthesis at lower shoot water potential) and more efficient in water-use (as indicated by carbon isotopic composition) than black spruce. Black spruce was found to be significantly less sensitive to nitrogen stress, exhibited greater plasticity in nitrogen-use efficiency (measured as the carbon-to-nitrogen ratio in total plant tissue), and had a greater specific N absorption rate under high-N conditions than white spruce. Trade-offs hypothesized to be associated with these nitrogen and water relations traits were examined, but few were confirmed. Water-use efficiency and nitrogen-use efficiency did not trade-off between species, but did trade-off plastically (i.e., across treatments) within species. When exposed to simultaneous limitations of N and water both species were forced to utilize each resource with suboptimal efficiency. The change in isotopic composition per unit change in C/N ratio was not the same in the two species. This difference may reflect optimization of the trade-off, whereby each species maximizes the use efficiency of the most limiting resource (respective to its habitat), while minimizing the concomitant reduction in the use efficiency of the other resource. Received: 10 June 1996 / Accepted: 8 October 1996  相似文献   

11.
Ecological and evolutionary insights from species invasions   总被引:14,自引:0,他引:14  
Species invasions provide numerous unplanned and frequently, but imperfectly, replicated experiments that can be used to better understand the natural world. Classic studies by Darwin, Grinnell, Elton and others on these species-invasion experiments provided invaluable insights for ecology and evolutionary biology. Recent studies of invasions have resulted in additional insights, six of which we discuss here; these insights highlight the utility of using exotic species as 'model organisms'. We also discuss a nascent hypothesis that might provide a more general, predictive understanding of invasions and community assembly. Finally, we emphasize how the study of invasions can help to inform our understanding of applied problems, such as extinction, ecosystem function and the response of species to climate change.  相似文献   

12.
The fossil record presents palaeoecological patterns of rise and fall on multiple scales of time and biological organization. Here, we argue that the rise and fall of species can result from a tragedy of the commons, wherein the pursuit of self-interests by individual agents in a larger interactive system is detrimental to the overall performance or condition of the system. Species evolving within particular communities may conform to this situation, affecting the ecological robustness of their communities. Results from a trophic network model of Permian-Triassic terrestrial communities suggest that community performance on geological timescales may in turn constrain the evolutionary opportunities and histories of the species within them.  相似文献   

13.
14.
Reviews in Fish Biology and Fisheries - Since 2015, the European Union gradually implemented the landing obligation (LO). This prohibits at-sea discarding of species under total allowable catch...  相似文献   

15.
16.
Evolutionary branching has been suggested as a mechanism to explain ecological speciation processes. Recent studies indicate however that demographic stochasticity and environmental fluctuations may prevent branching through stochastic competitive exclusion. Here we extend previous theory in several ways; we use a more mechanistic ecological model, we incorporate environmental fluctuations in a more realistic way and we include environmental autocorrelation in the analysis. We present a single, comprehensible analytical result which summarizes most effects of environmental fluctuations on evolutionary branching driven by resource competition. Corroborating earlier findings, we show that branching may be delayed or impeded if the underlying resources have uncorrelated or negatively correlated responses to environmental fluctuations. There is also a strong impeding effect of positive environmental autocorrelation, which can be related to results from recent experiments on adaptive radiation in bacterial microcosms. In addition, we find that environmental fluctuations can lead to cycles of repeated branching and extinction.  相似文献   

17.
We study the evolution of the network properties of a populated network embedded in a genotype space characterized by either a low or a high number of potential links, with particular emphasis on the connectivity and clustering. Evolution produces two distinct types of network. When a specific genotype is only able to influence a few other genotypes, the ecosystem consists of separate non-interacting clusters (i.e. isolated compartments) in genotype space. When different types may influence a large number of other sites, the network becomes one large interconnected cluster. The distribution of interaction strengths--but not the number of connections--changes significantly with time. We find that the species abundance is only realistic for a high level of species connectivity. This suggests that real ecosystems form one interconnected whole in which selection leads to stronger interactions between the different types. Analogies with niche and neutral theory and assembly models are also considered.  相似文献   

18.
19.
Electrophoretic analyses were performed on blood proteins of the five members of the Notropiscornutus species group. The protein systems included two plasma esterases, transferrin, a pre-albumin and hemoglobin. Plasma protein polymorphism within and between taxa was common. Hemoglobin appeared to be a more consistent and conservative character for assessing phylogenetic relationships. As deduced by both biochemical and morphological evidence, N. cerasinus is the most primitive member of the species group. Uniqueness for several biochemical characters suggests that the striped shiner should be afforded full species recognition as N. isolepis but additional study is needed concerning its relationship with N. cornutus chrysocephalus. The closest biochemical similarity was between the forms interpreted here as subspecies N. cornutus cornutus and N. c. chrysocephalus. N. albeolus clearly evolved from N. c. cornutus but early hybridization with N. cerasinus resulted in limited introgression from that species.  相似文献   

20.
Members of the YidC/Oxa1/Alb3 membrane protein family are multifunctional mediators of membrane protein integration, folding and assembly into large complexes. Their evolutionary conserved and physiologically important role appears to relate to the assembly of major energy-transducing membrane protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号