首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
真核细胞中,RNA 3’端poly(A)或oligo(A)的特异性水解被称为脱腺苷酸化(deadenylation)。脱腺苷酸化的执行者被称为脱腺苷酸酶(deadenylase)。绝大多数真核细胞中都存在多种脱腺苷酸酶,其中CCR4-NOT复合体和PAN2-PAN3复合体负责细胞中大多数mRNA的非特异性降解,PARN和PNLDC1等参与了特定子集mRNA的降解和多种非编码RNA的生物合成。作为RNA水平的重要调控者之一,脱腺苷酸酶参与了几乎所有细胞生命活动和多种重要生理和病理过程。在真核细胞中,脱腺苷酸酶的分子调控机制可能是:细胞中的大量RNA结合蛋白是RNA命运调控的中心分子,一方面根据RNA的状态或细胞需求识别特定的靶标RNA子集,另一方面招募特定脱腺苷酸酶,对特定子集RNA的3’端进行降解或修剪,从而调控RNA的最终命运。细胞中十余种脱腺苷酸酶同工酶、上千种RNA结合蛋白以及多种多样的翻译后修饰构成了复杂的动态分子调控网络,帮助细胞在生长、增殖、分化、应激、死亡等重要生命活动中精确维持RNA稳态或快速转换基因表达谱。  相似文献   

2.
3.
4.
PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.  相似文献   

5.
Tristetraprolin (TTP) directs its target AU-rich element (ARE)-containing mRNAs for degradation by promoting removal of the poly(A) tail. The p38 MAPK pathway regulates mRNA stability via the downstream kinase MAPK-activated protein kinase 2 (MAPKAP kinase 2 or MK2), which phosphorylates and prevents the mRNA-destabilizing function of TTP. We show that deadenylation of endogenous ARE-containing tumor necrosis factor mRNA is inhibited by p38 MAPK. To investigate whether phosphorylation of TTP by MK2 regulates TTP-directed deadenylation of ARE-containing mRNAs, we used a cell-free assay that reconstitutes the mechanism in vitro. We find that phosphorylation of Ser-52 and Ser-178 of TTP by MK2 results in inhibition of TTP-directed deadenylation of ARE-containing RNA. The use of 14-3-3 protein antagonists showed that regulation of TTP-directed deadenylation by MK2 is independent of 14-3-3 binding to TTP. To investigate the mechanism whereby TTP promotes deadenylation, it was necessary to identify the deadenylases involved. The carbon catabolite repressor protein (CCR)4·CCR4-associated factor (CAF)1 complex was identified as the major source of deadenylase activity in HeLa cells responsible for TTP-directed deadenylation. CAF1a and CAF1b were found to interact with TTP in an RNA-independent fashion. We find that MK2 phosphorylation reduces the ability of TTP to promote deadenylation by inhibiting the recruitment of CAF1 deadenylase in a mechanism that does not involve sequestration of TTP by 14-3-3. Cyclooxygenase-2 mRNA stability is increased in CAF1-depleted cells in which it is no longer p38 MAPK/MK2-regulated.  相似文献   

6.
Dynamic changes of the lengths of mRNA poly(A) tails are catalysed by diverse deadenylase enzymes. Modulating the length of the poly(A) tail of an mRNA is a widespread means of controlling protein production and mRNA stability. Recent insights illuminate the specialized activities, biological functions and regulation of deadenylases. We propose that the recruitment of multifunctional deadenylase complexes provides unique opportunities to control mRNAs and that the heterogeneity of the deadenylase complexes is exploited to control translation and mRNA stability.  相似文献   

7.
Animal miRNAs silence the expression of mRNA targets through translational repression, deadenylation and subsequent mRNA degradation. Silencing requires association of miRNAs with an Argonaute protein and a GW182 family protein. In turn, GW182 proteins interact with poly(A)-binding protein (PABP) and the PAN2–PAN3 and CCR4–NOT deadenylase complexes. These interactions are required for the deadenylation and decay of miRNA targets. Recent studies have indicated that miRNAs repress translation before inducing target deadenylation and decay; however, whether translational repression and deadenylation are coupled or represent independent repressive mechanisms is unclear. Another remaining question is whether translational repression also requires GW182 proteins to interact with both PABP and deadenylases. To address these questions, we characterized the interaction of Drosophila melanogaster GW182 with deadenylases and defined the minimal requirements for a functional GW182 protein. Functional assays in D. melanogaster and human cells indicate that miRNA-mediated translational repression and degradation are mechanistically linked and are triggered through the interactions of GW182 proteins with PABP and deadenylases.  相似文献   

8.
The major pathways of mRNA turnover in eukaryotic cells are initiated by shortening of the poly(A) tail. Recent work has identified Ccr4p and Pop2p as components of the major cytoplasmic deadenylase in yeast. We now demonstrate that CCR4 encodes the catalytic subunit of the deadenylase and that Pop2p is dispensable for catalysis. In addition, we demonstrate that at least some of the Ccr4p/Pop2p-associated Not proteins are cytoplasmic, and lesions in some of the NOT genes can lead to defects in mRNA deadenylation rates. The Ccr4p deadenylase is inhibited in vitro by addition of the poly(A) binding protein (Pab1p), suggesting that dissociation of Pab1p from the poly(A) tail may be rate limiting for deadenylation in vivo. In addition, the rapid deadenylation of the COX17 mRNA, which is controlled by a member of the Pumilio family of deadenylation activators Puf3p, requires an active Ccr4p/Pop2p/Not deadenylase. These results define the Ccr4p/Pop2p/Not complex as the cytoplasmic deadenylase in yeast and identify positive and negative regulators of this enzyme complex.  相似文献   

9.
Tristetraprolin (TTP) is the prototype for a family of RNA binding proteins that bind the tumor necrosis factor (TNF) messenger RNA AU-rich element (ARE), causing deadenylation of the TNF poly(A) tail, RNA decay, and silencing of TNF protein production. Using mass spectrometry sequencing we identified poly(A) binding proteins-1 and -4 (PABP1 and PABP4) in high abundance and good protein coverage from TTP immunoprecipitates. PABP1 significantly enhanced TNF ARE binding by RNA EMSA and prevented TTP-initiated deadenylation in an in vitro macrophage assay of TNF poly(A) stability. Neomycin inhibited TTP-promoted deadenylation at concentrations shown to inhibit the deadenylases poly(A) ribonuclease and CCR4. Stably transfected RAW264.7 macrophages overexpressing PABP1 do not oversecrete TNF; instead they upregulate TTP protein without increasing TNF protein production. The PABP1 inhibition of deadenylation initiated by TTP does not require the poly(A) binding regions in RRM1 and RRM2, suggesting a more complicated interaction than simple masking of the poly(A) tail from a 3'-exonuclease. Like TTP, PABP1 is a substrate for p38 MAP kinase. Finally, PABP1 stabilizes cotransfected TTP in 293T cells and prevents the decrease in TTP levels seen with p38 MAP kinase inhibition. These findings suggest several levels of functional antagonism between TTP and PABP1 that have implications for regulation of unstable mRNAs like TNF.  相似文献   

10.
11.
Shortening of the poly(A) tail (deadenylation) is the first and often rate-limiting step in the degradation pathway of most eukaryotic mRNAs and is also used as a means of translational repression, in particular in early embryonic development. The nanos mRNA is translationally repressed by the protein Smaug in Drosophila embryos. The RNA has a short poly(A) tail at steady state and decays gradually during the first 2-3 h of development. Smaug has recently also been implicated in mRNA deadenylation. To study the mechanism of sequence-dependent deadenylation, we have developed a cell-free system from Drosophila embryos that displays rapid deadenylation of nanos mRNA. The Smaug response elements contained in the nanos 3'-untranslated region are necessary and sufficient to induce deadenylation; thus, Smaug is likely to be involved. Unexpectedly, deadenylation requires the presence of an ATP regenerating system. The activity can be pelleted by ultracentrifugation, and both the Smaug protein and the CCR4.NOT complex, a known deadenylase, are enriched in the active fraction. The same extracts show pronounced translational repression mediated by the Smaug response elements. RNAs lacking a poly(A) tail are poorly translated in the extract; therefore, SRE-dependent deadenylation contributes to translational repression. However, repression is strong even with RNAs either bearing a poly(A) tract that cannot be removed or lacking poly(A) altogether; thus, an additional aspect of translational repression functions independently of deadenylation.  相似文献   

12.
Cytoplasmic deadenylation: regulation of mRNA fate   总被引:1,自引:0,他引:1  
  相似文献   

13.
Translation termination-coupled deadenylation is the first and often the rate-limiting step of eukaryotic mRNA decay in which two deadenylases, Ccr4-Caf1 and Pan2, play key roles. One of the deadenylases, Caf1, associates with Tob, which recruits Caf1 to the poly(A) tail through interactions with a cytoplasmic poly(A)-binding protein 1 (PABPC1). We previously proposed that the competition between Tob and eRF3 (a translation termination factor that interacts with PABPC1) is responsible for the regulation of deadenylase activity. However, the molecular mechanism of the regulation should be addressed by investigating the binding affinity and the cellular levels of these proteins. In this work, we characterized the human Tob interactions with Caf1 and a C-terminal domain of PABPC1 (PABC). Nuclear magnetic resonance (NMR) and Western blot analyses revealed that Tob consists of a structured N-terminal BTG-Tob domain and an unstructured C-terminal region with two conserved PAM2 (PABPC1-interacting motif 2) motifs. The BTG-TOB domain associates with Caf1, whereas the C-terminal PAM2 motif binds to PABC, with a Kd value of 20 μm. Furthermore, we demonstrated that the levels of eRF3 and Tob in HeLa cells are 4–5 μm and less than 0.2 μm, respectively. On the basis of these results, we propose a thermodynamic mechanism for the translation termination-coupled deadenylation mediated by the Tob-Caf1 complex.  相似文献   

14.
The stability of mRNAs is an important point in the regulation of gene expression in eukaryotes. The mRNA turnover pathways have been identified in yeast and mammals. However, mRNA turnover pathways in trypanosomes have not been widely studied. Deadenylation is the first step in the major mRNA turnover pathways of yeast and mammals. To better understand mRNA degradation processes in these organisms, we have developed an in vitro mRNA turnover system that is functional for deadenylation. In this system, addition of poly(A) homopolymer activates the deadenylation of poly(A) tails. The trypanosomal deadenylase activity is a 3'-->5' exonuclease specific for adenylate residues, generates 5'-AMP as a product, is magnesium dependent, and is inhibited by neomycin B sulfate. These characteristics suggest similarity with other eukaryotic deadenylases. Furthermore, this activity is cap independent, indicating a potential difference between the trypanosomal activity and PARN, but suggesting similarity to Ccr4p/Pop2p activities. Extracts immunodepleted of Pab1p required the addition of poly(A) competition to activate deadenylation. Trypanosomal Pab1p functions as an inhibitor of the activity under in vitro conditions. Pab1p appears to be one of several mRNA stability proteins in trypanosomal extracts.  相似文献   

15.
The translational regulation of maternal mRNAs is the primary mechanism by which stage-specific programs of protein synthesis are executed during early development. Translation of a variety of maternal mRNAs requires either the maintenance or cytoplasmic elongation of a 3' poly(A) tail. Conversely, deadenylation results in translational inactivation. Although its precise function remains to be elucidated, the highly conserved poly(A) binding protein I (PABP) mediates poly(A)-dependent events in translation initiation and mRNA stability. Xenopus oocytes contain less than one PABP per poly(A) binding site suggesting that the translation of maternal mRNAs could be either limited by or independent of PABP. In this report, we have analyzed the effects of overexpressing PABP on the regulation of mRNAs during Xenopus oocyte maturation. Increased levels of PABP prevent the maturation-specific deadenylation and translational inactivation of maternal mRNAS that lack cytoplasmic polyadenylation elements. Overexpression of PABP does not interfere with maturation-specific polyadenylation, but reduces the recruitment of some mRNAs onto polysomes. Deletion of the C-terminal basic region and a single RNP motif from PABP significantly reduces both its binding to polyadenylated RNA in vivo and its ability to prevent deadenylation. In contrast to a yeast PABP-dependent poly(A) nuclease, PABP inhibits Xenopus oocyte deadenylase in vitro. These results indicate that maturation-specific deadenylation in Xenopus oocytes is facilitated by a low level of PABP consistent with a primary function for PABP to confer poly(A) stability.  相似文献   

16.
PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3′ untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA''s polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation.  相似文献   

17.
The mRNA deadenylation process, catalyzed by the CCR4 deadenylase, is known to be the major factor controlling mRNA decay rates in Saccharomyces cerevisiae. We have identified the proline-rich region and RRM1 domains of poly(A) binding protein (PAB1) as necessary for CCR4 deadenylation. Deletion of either of these regions but not other regions of PAB1 significantly reduced PAB1-PAB1 protein interactions, suggesting that PAB1 oligomerization is a required step for deadenylation. Moreover, defects in these two regions inhibited the formation of a novel, circular monomeric PAB1 species that forms in the absence of poly(A). Removal of the PAB1 RRM3 domain, which promoted PAB1 oligomerization and circularization, correspondingly accelerated CCR4 deadenylation. Circular PAB1 was unable to bind poly(A), and PAB1 multimers were severely deficient or unable to bind poly(A), implicating the PAB1 RNA binding surface as critical in making contacts that allow PAB1 self-association. These results support the model that the control of CCR4 deadenylation in vivo occurs in part through the removal of PAB1 from the poly(A) tail following its self-association into multimers and/or a circular species. Known alterations in the P domains of different PAB proteins and factors and conditions that affect PAB1 self-association would, therefore, be expected to be critical to controlling mRNA turnover in the cell.  相似文献   

18.
Shortening and removal of the 3′ poly(A) tail of mature mRNA by poly(A)-specific 3′ exonucleases (deadenylases) is the initial and often rate-limiting step in mRNA degradation. The majority of cytoplasmic deadenylase activity is associated with the Ccr4–Not and Pan2–Pan3 complexes. Two distinct catalytic subunits, Caf1/Pop2 and Ccr4, are associated with the Ccr4–Not complex, whereas the Pan2 enzymatic subunit forms a stable complex with Pan3. In this review, we discuss the composition and activity of these two deadenylases. In addition, we comment on generic and specific mechanisms of recruitment of Ccr4–Not and Pan2–Pan3 to mRNAs. Finally, we discuss specialised and redundant functions of the deadenylases and review the importance of Ccr4–Not subunits in the regulation of physiological processes. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

19.
CUG-BP is the human homolog of the Xenopus EDEN-BP, which was shown previously to bind to mRNAs, such as c-mos, that exhibit rapid deadenylation following fertilization of the oocyte. While several studies have focused on roles of CUG-BP as a splicing or translation regulator in mammalian cells, its role in mRNA decay has not been examined in detail. Here, we have used an in vitro deadenylation assay to dissect the function of CUG-BP in the decay of two ARE-containing mRNAs: c-fos and TNFalpha. CUG-BP binds specifically to both of these RNAs and stimulates poly(A) shortening by PARN. Moreover, CUG-BP interacts with PARN in extracts by coimmunoprecipitation, and this interaction can be recapitulated using recombinant proteins. CUG-BP, therefore, is the first RNA-binding protein shown to directly recruit a deadenylase to an RNA substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号