首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Maternal perception of reduced fetal movement (RFM) is associated with increased risk of stillbirth and fetal growth restriction (FGR). DFM is thought to represent fetal compensation to conserve energy due to insufficient oxygen and nutrient transfer resulting from placental insufficiency. To date there have been no studies of placental structure in cases of DFM.

Objective

To determine whether maternal perception of reduced fetal movements (RFM) is associated with abnormalities in placental structure and function.

Design

Placentas were collected from women with RFM after 28 weeks gestation if delivery occurred within 1 week. Women with normal movements served as a control group. Placentas were weighed and photographs taken. Microscopic structure was evaluated by immunohistochemical staining and image analysis. System A amino acid transporter activity was measured as a marker of placental function.Placentas from all pregnancies with RFM (irrespective of outcome) had greater area with signs of infarction (3.5% vs. 0.6%; p<0.01), a higher density of syncytial knots (p<0.001) and greater proliferation index (p<0.01). Villous vascularity (p<0.001), trophoblast area (p<0.01) and system A activity (p<0.01) were decreased in placentas from RFM compared to controls irrespective of outcome of pregnancy.

Conclusions

This study provides evidence of abnormal placental morphology and function in women with RFM and supports the proposition of a causal association between placental insufficiency and RFM. This suggests that women presenting with RFM require further investigation to identify those with placental insufficiency.  相似文献   

2.
Injections of 6-hydroxydopamine in mouse neonates caused extensive and long lasting damage to the sympathetic nervous system and impaired brown fat development. Brown adipose tissue (BAT) thermogenic capacity of sympathectomized mice (up to 120 days old) was reduced because of marked reductions in the tissue mitochondrial protein content and the mitochondrial concentration of uncoupling protein, as assessed by [3H]GDP binding and immunoassay. Neonatal sympathectomy did not affect BAT DNA content. Sympathectomized mice also had reduced epinephrine-stimulated rates of oxygen consumption. BAT of sympathectomized mice failed to respond by increases in [3H]GDP binding to isolated mitochondria and uncoupling protein concentration when animals were offered a palatable high-fat dietary supplement that increased calorie intake of both normal and sympathectomized mice. The high-fat diet caused increases in body weight, carcass fat, and gonadal white fat pad weights in sympathectomized animals that were similar to those of control mice. These results show that inactivation of BAT metabolism did not accentuate the development of obesity caused by a dietary supplement rich in fat and suggest that stimulation of BAT metabolism was not very effective in counteracting the obesity-inducing effect of this diet.  相似文献   

3.
Maternal cigarette smoking is considered an important risk factor associated with fetal intrauterine growth restriction (IUGR). Polycyclic aromatic hydrocarbons (PAHs) are well-known constituents of cigarette smoke, and the effects of acute exposure to these chemicals at different gestational stages have been well established in a variety of laboratory animals. In addition, many PAHs are known ligands of the aryl hydrocarbon receptor (AhR), a cellular xenobiotic sensor responsible for activating the metabolic machinery. In this study, we have applied a chronic, low-dose regimen of PAH exposure to C57Bl/6 female mice before conception. This treatment caused IUGR in day 15.5 post coitum (d15.5) fetuses and yielded abnormalities in the placental vasculature, resulting in significantly reduced arterial surface area and volume of the fetal arterial vasculature of the placenta. However, examination of the small vasculature within the placental labyrinth of PAH-exposed dams revealed extensive branching and enlargement of these vessels, indicating a possible compensatory mechanism. These alterations in vascularization were accompanied by reduced placental cell death rates, increased expression levels of antiapoptotic Xiap, and decreased expression of proapoptotic Bax, cleaved poly(ADP-ribose) polymerase-1, and active caspase-3. AhR-deficient fetuses were rescued from PAH-induced growth restriction and exhibited no changes in the labyrinthine cell death rate. The results of this investigation suggest that chronic exposure to PAHs is a contributing factor to the development of IUGR in human smokers and that the AhR pathway is involved.  相似文献   

4.
5.
The effects of a high fat diet on the development of diabetes mellitus, insulin resistance and secretion have been widely investigated. We investigated the effects of a high fat diet on the pancreas and skeletal muscle of normal rats to explore diet-induced insulin resistance mechanisms. Forty-four male Wistar rats were divided into six groups: a control group fed standard chow, a group fed a 45% fat diet and a group fed a 60% fat diet for 3 weeks to measure acute effects; an additional three groups were fed the same diet regimens for 8 weeks to measure chronic effects. The morphological effects of the two high fat diets were examined by light microscopy. Insulin in pancreatic islets was detected using immunohistochemistry. The homeostasis model assessment of insulin resistance index and insulin staining intensity in islets increased significantly with acute administration of high fat diets, whereas staining intensity decreased with chronic administration of the 45% fat diet. Islet areas increased significantly with chronic administration. High fat diet administration led to islet degeneration, interlobular adipocyte accumulation and vacuolization in the pancreatic tissue, as well as degeneration and lipid droplet accumulation in the skeletal muscle tissue. Vacuolization in the pancreas and lipid droplets in skeletal muscle tissue increased significantly with chronic high fat diet administration. We suggest that the glucolipotoxic effects of high fat diet administration depend on the ratio of saturated to unsaturated fatty acid content in the diet and to the total fat content of the diet.  相似文献   

6.
7.
The authors studied biopotentials in the region of the amygdala and the septum of rats fed on a standard, high protein or high fat diet. During the first 3-6 days after changing from the standard to the high protein or high fat diet, a decrease in the amplitude of electrical activity was found in both the regions in question. After 3 days on the high fat or the high protein diet, an increase was found in the frequency of electrical activity in the amygdala or the septum, according to the type of diet. A study of the amplitude of electrical activity showed that the electrical potential in the septum was always lower than in the amygdala. The frequency spectrum analysis showed a marked change in the superimposed frequency curve only in animals fed on the high fat diet.  相似文献   

8.
Male Wistar rats aged 75 and 150 days were given high fat diet (36.5 weight % and 30 weight % fat) over a period of 14 days. The growth (PER, NPR) and utilization (NPU, LPU) parameters of protein biological value and liver phosphoenolpyruvate carboxykinase (PEPCK) activity were determined. In another experiment, the time dependence of liver gluconeogenesis enzyme (PEPCK and fructose-1,6-diphosphatase /FDP-ase/) and transaminase (alanine and aspartate aminotransferase /ALT, AST/) activities during 24 days' administration of the diet were determined. A 14 days' high fat intake had a negative effect on protein utilization in the organism of 75- and 150-day-old animals, which was more pronounced in the younger age group (a bigger drop in net protein utilization /NPU/ and greater stimulation of PEPCK activity). In 150-day-old animals the negative effect of a high fat intake was already manifested on the 6th to 10th day of the diet to the same degree as in the younger animals on the 14th day, as seen from the increase in all the enzyme activities. The paper presents findings on differences in the degree of the negative effect of a high fat intake on protein utilization with reference to age.  相似文献   

9.
The incidence of metabolic disease, including type 2 diabetes and obesity, has increased to epidemic levels in recent years. A growing body of evidence suggests that the intrauterine environment plays a key role in the development of metabolic disease in offspring. Among other perturbations in early life, alteration in the provision of nutrients has profound and lasting effects on the long term health and well being of offspring. Rodent and non-human primate models provide a means to understand the underlying mechanisms of this programming effect. These different models demonstrate converging effects of a maternal high fat diet on insulin and glucose metabolism, energy balance, cardiovascular function and adiposity in offspring. Furthermore, evidence suggests that the early life environment can result in epigenetic changes that set the stage for alterations in key pathways of metabolism that lead to type 2 diabetes or obesity. Identifying and understanding the causal factors responsible for this metabolic dysregulation is vital to curtailing these epidemics. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

10.
Delay in the onset of lactogenesis has been shown to occur in women who are obese, however the mechanism altered within the mammary gland causing the delay remains unknown. Consumption of high fat diets (HFD) has been previously determined to result decreased litters and litter numbers in rodent models due to a decrease in fertility. We examined the effects of feeding a HFD (60% kcal from fat) diet versus a low-fat diet (LFD; 10% kcal from fat) to female Wistar rats on lactation outcomes. Feeding of HFD diet resulted in increased pup weights compared to pups from LFD fed animals for 4 d post-partum. Lactation was delayed in mothers on HFD but they began to produce copious milk volumes beginning 2 d post-partum, and milk yield was similar to LFD by day 3. Mammary glands collected from lactating animals on HFD diet, displayed a disrupted morphologies, with very few and small alveoli. Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1) and keratin 5 (K5), a luminobasal cell marker in the mammary glands of HFD lactating animals. Expression of tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin (5-HT) biosynthesis, and the 5-HT(7) receptor (HTR7), which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals. Additionally, we saw elevation of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α). These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process.  相似文献   

11.
The effects of alcohol and diet on acute pancreatitis were studied in 192 male Wistar rats. The animals were fed with standard laboratory food up to three months of age and, after that, were divided into four groups of 48 animals, each group receiving a different diet: standard, fat-rich, protein-rich or carbohydrate-rich. In each diet group, 24 animals obtained 15% (v/v) ethanol in their drinking solution while the other 24 rats had water ad libitum. The diet period lasted for 12 weeks, after which acute experimental pancreatitis was induced under diethyl ether anesthesia by ductal injection of rat bile into the pancreatic ducts. Moderate or severe ductal cell dysplasia developed in three of the 15 survivors in the group fed with a high-fat diet and 15% ethanol in their drinking solution. Mild acute pancreatitis was histologically found in 13 rats and moderate pancreatitis in one rat in this group. One rat did not show any pancreatic parenchymal changes. Two of the rats with ductal cell dysplasia had mild pancreatitis and the pancreas of the third rat was normal in this respect. Dysplastic changes were not found in any other experimental group used in the study. The observation is statistically significant at p less than 0.025 level. The results indicate that alcohol and a high fat diet together might have a carcinogenic effect on pancreatic ductal epithelium in rats.  相似文献   

12.
13.
14.
15.
The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver∶brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction.  相似文献   

16.
17.
In mammalian fast skeletal muscle, constitutive and alternative splicing from a single troponin T (TnT) gene produce multiple developmentally regulated and tissue specific TnT isoforms. Two exons, alpha (exon 16) and beta (exon 17), located near the 3' end of the gene and coding for two different 14 amino acid residue peptides are spliced in a mutually exclusive manner giving rise to the adult TnTalpha and the fetal TnTbeta isoforms. In addition, an acidic peptide coded by a fetal (f) exon located between exons 8 and 9 near the 5' end of the gene, is specifically present in TnTbeta and absent in the adult isoforms. To define the functional role of the f and alpha/beta exons, we constructed combinations of TnT cDNAs from a single human fetal fast skeletal TnTbeta cDNA clone in order to circumvent the problem of N-terminal sequence heterogeneity present in wild-type TnT isoforms, irrespective of the stage of development. Nucleotide sequences of these constructs, viz. TnTalpha, TnTalpha + f, TnTbeta - f and TnTbeta are identical, except for the presence or absence of the alpha or beta and f exons. Our results, using the recombinant TnT isoforms in different functional in vitro assays, show that the presence of the f peptide in the N-terminal T1 region of TnT, has a strong inhibitory effect on binary interactions between TnT and other thin filament proteins, TnI, TnC and Tm. The presence of the f peptide led to reduced Ca2+-dependent ATPase activity in a reconstituted thin filament, whereas the contribution of the alpha and beta peptides in the biological activity of TnT was primarily modulatory. These results indicate that the f peptide confers an inhibitory effect on the biological function of fast skeletal TnT and this can be correlated with changes in the Ca2+ regulation associated with development in fast skeletal muscle.  相似文献   

18.
We explored the impact of exposure to an obesogenic diet (High Fat–High Sucrose; HFS) during the post-weaning period on sweet preference and behaviors linked to reward and anxiety. All rats were fed chow. In addition a HFS-transient group had access to this diet for 10 days from post-natal (PN) day 22 and a HFS-continuous group continued access until adult. Behavioral tests were conducted immediately after PN 32 (adolescence) or after PN 60 (adult) and included: the condition place preference (CPP) test for chocolate, sugar and saccharin preference (anhedonia), the elevated plus maze (anxiety-like behavior) and the locomotor response to quinpirole in the open field. Behavior was unaltered in adult rats in the HFS-transient group, suggesting that a short exposure to this obesogenic food does not induce long-term effects in food preferences, reward perception and value of palatable food, anxiety or locomotor activity. Nevertheless, rats that continued to have access to HFS ate less chocolate during CPP training and consumed less saccharin and sucrose when tested in adolescence, effects that were attenuated when these rats became adult. Moreover, behavioral effects linked to transient HFS exposure in adolescence were not sustained if the rats did not remain on that diet until adult. Collectively our data demonstrate that exposure to fat and sucrose in adolescence can induce immediate reward hypofunction after only 10 days on the diet. Moreover, this effect is attenuated when the diet is extended until the adult period, and completely reversed when the HFS diet is removed.  相似文献   

19.
Journal of Physiology and Biochemistry - The mechanisms involved in renal dysfunction induced by high-fat diet (HFD) in subjects with altered renal development (ARDev) are understudied. The...  相似文献   

20.
Hypothalamus-pituitary-adrenal-axis activity is suggested to be involved in the pathophysiology of the metabolic syndrome. In diet-induced obesity mouse models, features of the metabolic syndrome are induced by feeding high fat diet. However, the models reveal conflicting results with respect to the hypothalamus-pituitary-adrenal-axis activation. The aim of this review was to assess the effects of high fat feeding on the activity of the hypothalamus-pituitary-adrenal-axis in mice. PubMed, EMBASE, Web of Science, the Cochrane database, and Science Direct were electronically searched and reviewed by 2 individual researchers. We included only original mouse studies reporting parameters of the hypothalamus-pituitary-adrenal-axis after high fat feeding, and at least 1 basal corticosterone level with a proper control group. Studies with adrenalectomized mice, transgenic animals only, high fat diet for less than 2 weeks, or other interventions besides high fat diet, were excluded. 20 studies were included. The hypothalamus-pituitary-adrenal-axis evaluation was the primary research question in only 5 studies. Plasma corticosterone levels were unchanged in 40%, elevated in 30%, and decreased in 20% of the studies. The effects in the peripheral tissues and the central nervous system were also inconsistent. However, major differences were found between mouse strains, experimental conditions, and the content and duration of the diets. This systematic review demonstrates that the effects of high fat feeding on the basal activity of the hypothalamus-pituitary-adrenal-axis in mice are limited and inconclusive. Differences in experimental conditions hamper comparisons and accentuate the need for standardized evaluations to discern the effects of diet-induced obesity on the hypothalamus-pituitary-adrenal-axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号