首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous biochemical studies suggested that HIV-1-encoded Vpr may kill cells through an effect on the adenine nucleotide translocase (ANT), thereby causing mitochondrial membrane permeabilization (MMP). Here, we show that Vpr fails to activate caspases in conditions in which it induces cell killing. The knock-out of essential caspase-activators (Apaf-1 or caspase-9) or the knock-out of a mitochondrial caspase-independent death effector (AIF) does not abolish Vpr-mediated killing. In contrast, the cytotoxic effects of Vpr are reduced by transfection-enforced overexpression of two MMP-inhibitors, namely the endogenous protein Bcl-2 or the cytomegalovirus-encoded ANT-targeted protein vMIA. Vpr, which can elicit MMP through a direct effect on mitochondria, and HIV-1-Env, which causes MMP through an indirect pathway, exhibit additive (but not synergic) cytotoxic effects. In conclusion, it appears that Vpr induces apoptosis through a caspase-independent mitochondrial pathway.  相似文献   

2.
Human immunodeficiency virus 1 (HIV-1) encodes a gene product, Vpr, that facilitates the nuclear uptake of the viral pre-integration complex in non-dividing cells and causes infected cells to arrest in the G(2) phase of the cell cycle. Vpr was also shown to cause mitochondrial dysfunction in human cells and budding yeasts, an effect that was proposed to lead to growth arrest and cell killing in budding yeasts and apoptosis in human cells. In this study, we used a genetic selection in Saccharomyces cerevisiae to identify hexameric peptides that suppress the growth arrest phenotype mediated by Vpr. Fifteen selected glutathione S-transferase (GST)-fused peptides were found to overcome to different extents Vpr-mediated growth arrest. Amino acid analysis of the inhibitory peptide sequences revealed the conservation of a di-tryptophan (diW) motif. DiW-containing GST-peptides interacted with Vpr in GST pull-down assays, and their level of interaction correlated with their ability to overcome Vpr-mediated growth arrest. Importantly, Vpr-binding GST-peptides were also found to alleviate Vpr-mediated apoptosis and G(2) arrest in HIV-1-producing CD4(+) T cell lines. Furthermore, they co-localized with Vpr and interfered with its nuclear translocation. Overall, this study defines a class of diW-containing peptides that inhibit HIV-1 Vpr biological activities most likely by interacting with Vpr and interfering with critical protein interactions.  相似文献   

3.
In hypoxic cells, dysfunctional mitochondria are selectively removed by a specialized autophagic process called mitophagy. The ER–mitochondrial contact site (MAM) is essential for fission of mitochondria prior to engulfment, and the outer mitochondrial membrane protein FUNDC1 interacts with LC3 to recruit autophagosomes, but the mechanisms integrating these processes are poorly understood. Here, we describe a new pathway mediating mitochondrial fission and subsequent mitophagy under hypoxic conditions. FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. As mitophagy proceeds, FUNDC1/calnexin association attenuates and the exposed cytosolic loop of FUNDC1 interacts with DRP1 instead. DRP1 is thereby recruited to the MAM, and mitochondrial fission then occurs. Knockdown of FUNDC1, DRP1, or calnexin prevents fission and mitophagy under hypoxic conditions. Thus, FUNDC1 integrates mitochondrial fission and mitophagy at the interface of the MAM by working in concert with DRP1 and calnexin under hypoxic conditions in mammalian cells.  相似文献   

4.
5.
The human immunodeficiency virus type 1 (HIV-1) Vpr protein has important functions in advancing HIV pathogenesis via several effects on the host cell. Vpr mediates nuclear import of the preintegration complex, induces host cell apoptosis, and inhibits cell cycle progression at G(2), which increases HIV gene expression. Some of Vpr's activities have been well described, but some functions, such as cell cycle arrest, are not yet completely characterized, although components of the ATR DNA damage repair pathway and the Cdc25C and Cdc2 cell cycle control mechanisms clearly play important roles. We investigated the mechanisms underlying Vpr-mediated cell cycle arrest by examining global cellular gene expression profiles in cell lines that inducibly express wild-type and mutant Vpr proteins. We found that Vpr expression is associated with the down-regulation of genes in the MEK2-ERK pathway and with decreased phosphorylation of the MEK2 effector protein ERK. Exogenous provision of excess MEK2 reverses the cell cycle arrest associated with Vpr, confirming the involvement of the MEK2-ERK pathway in Vpr-mediated cell cycle arrest. Vpr therefore appears to arrest the cell cycle at G(2)/M through two different mechanisms, the ATR mechanism and a newly described MEK2 mechanism. This redundancy suggests that Vpr-mediated cell cycle arrest is important for HIV replication and pathogenesis. Our findings additionally reinforce the idea that HIV can optimize the host cell environment for viral replication.  相似文献   

6.
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.  相似文献   

7.
8.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) exerts multiple effects on viral and host cellular activities during infection, including induction of the cell cycle G2 arrest, and cell death in both human cells and the fission yeast Schizosaccharomyces pombe. We show that treament of exponential-phase wild-type Vpr-expressing S. pombe cells with a low, subinhibitory concentration (0.15 mmol/L) of hydrogen peroxide and 0.1 mmol/L thiamine significantly increased both cell proliferation and survival rates and decreased the number of elongated G2-arrested cells. Short-term, H2O2-induced adaptive stress increased the survival of the cells while acute stress conditions interrupted the Vpr-mediated death of the cells; however, no changes in cell length or cell phase were detected. The results suggest the importance of the oxidative status of the cells in Vpr-mediated processes. Our findings contribute to the development of a new approach via which to investigate the contribution of Vpr to HIV pathogenesis and to reduce the Vpr-mediated effects in HIV-infected patients.  相似文献   

9.
Wenxian Wu  Wen Li  Hao Chen  Runzhi Zhu  Du Feng 《Autophagy》2016,12(9):1675-1676
Mitochondria need to be fragmented prior to engulfment by phagophores, the precursors to autophagosomes. However, how these 2 processes are finely regulated and integrated is poorly understood. We have shown that the outer mitochondrial membrane protein FUNDC1 is a novel mitochondrial-associated membrane (MAM) protein, enriched at the MAM by interacting with the ER resident protein CANX (calnexin) under hypoxia. As mitophagy proceeds, it dissociates from CANX and preferably recruits DNM1L/DRP1 to drive mitochondrial fission in response to hypoxic stress. In addition, knocking down of FUNDC1, DNM1L or CANX in hypoxic cells increases the number of elongated mitochondria and also reduces the colocalization of autophagosome and mitochondria, thus preventing mitophagy. These findings identify FUNDC1 as a molecular hub integrating mitochondrial fission and mitophagy at the MAM in response to hypoxia.  相似文献   

10.
11.
12.
In the liver, contact sites between the endoplasmic reticulum (ER) and mitochondria (named MAMs) may be crucial hubs for the regulation of lipid metabolism, thus contributing to the exacerbation or prevention of fatty liver. We hypothesized that tether proteins located at MAMs could play a key role in preventing triglyceride accumulation in hepatocytes and nonalcoholic fatty liver disease (NAFLD) occurrence. To test this, we explored the role of two key partners in building MAM integrity and functionality, the glucose-regulated protein 75 (Grp75) and mitofusin 2 (Mfn2), which liver contents are altered in obesity and NAFLD. Grp75 or Mfn2 expression was either silenced using siRNA or overexpressed with adenoviruses in Huh7 cells.Silencing of Grp75 and Mfn2 resulted in decreased ER-mitochondria interactions, mitochondrial network fusion state and mitochondrial oxidative capacity, while overexpression of the two proteins induced mirror impacts on these parameters. Furthermore, Grp75 or Mfn2 silencing decreased cellular cholesterol content and enhanced triglyceride secretion in ApoB100 lipoproteins, while their overexpression led to reverse effects. Cellular phosphatidylcholine/phosphatidylethanolamine ratio was decreased only upon overexpression of the proteins, potentially contributing to altered ApoB100 assembly and secretion. Despite the opposite differences, both silencing and overexpression of Grp75 or Mfn2 induced triglyceride storage, although a fatty acid challenge was required to express the alteration upon protein silencing. Among the mechanisms potentially involved in this phenotype, ER stress was closely associated with altered triglyceride metabolism after Grp75 or Mfn2 overexpression, while blunted mitochondrial FA oxidation capacity may be the main defect causing triglyceride accumulation upon Grp75 or Mfn2 silencing. Further studies are required to decipher the link between modulation of Grp75 or Mfn2 expression, change in MAM integrity and alteration of cholesterol content of the cell.In conclusion, Grp75 or Mfn2 silencing and overexpression in Huh7 cells contribute to altering MAM integrity and cholesterol storage in opposite directions, but all promote triglyceride accumulation through distinct cellular pathways. This study also highlights that besides Mfn2, Grp75 could play a central role in hepatic lipid and cholesterol metabolism in obesity and NAFLD.  相似文献   

13.
The HIV-1 encoded apoptogenic protein Vpr induces mitochondrial membrane permeabilization (MMP) via interactions with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocator (ANT). We have designed a peptide, TEAM-VP, composed of two functional domains, one a tumor blood vessel RGD-like 'homing' motif and the other an MMP-inducing sequence derived from Vpr. When added to isolated mitochondria, TEAM-VP interacts with ANT and VDAC, reduces oxygen consumption and overcomes Bcl-2 protection to cause inner and outer MMP. TEAM-VP specifically recognizes cell-surface expressed alpha(V)beta(3) integrins, internalizes, temporarily localizes to lysosomes and progressively co-distributes with the mitochondrial compartment with no sign of lysosomal membrane permeabilization. Finally TEAM-VP reaches mitochondria of angiogenic endothelial cells to induce mitochondrial fission, dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)), cytochrome c release and apoptosis hallmarks. Hence, this chimeric peptide constitutes the first example of a virus-derived mitochondriotoxic compound as a candidate to kill selectively tumor neo-endothelia.  相似文献   

14.
Anti-Vpr activity of a yeast chaperone protein   总被引:6,自引:0,他引:6       下载免费PDF全文
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) exerts multiple effects on viral and host cellular activities during viral infection, including nuclear transport of the proviral integration complex, induction of cell cycle G(2) arrest, and cell death. In this report, we show that a fission yeast chaperone protein Hsp16 inhibits HIV-1 by suppressing these Vpr activities. This protein was identified through three independent genome-wide screens for multicopy suppressors of each of the three Vpr activities. Consistent with the properties of a heat shock protein, heat shock-induced elevation or overproduction of Hsp16 suppressed Vpr activities through direct protein-protein interaction. Even though Hsp16 shows a stronger suppressive effect on Vpr in fission yeast than in mammalian cells, similar effects were also observed in human cells when fission yeast hsp16 was expressed either in vpr-expressing cells or during HIV-1 infection, indicating a possible highly conserved Vpr suppressing activity. Furthermore, stable expression of hsp16 prior to HIV-1 infection inhibits viral replication in a Vpr-dependent manner. Together, these data suggest that Hsp16 inhibits HIV-1 by suppressing Vpr-specific activities. This finding could potentially provide a new approach to studying the contribution of Vpr to viral pathogenesis and to reducing Vpr-mediated detrimental effects in HIV-infected patients.  相似文献   

15.
Persistent poly (ADP-ribose) polymerase 1 (PARP-1) activation has proven detrimental and can lead to PARP-1-dependent cell death. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) serve as essential hubs for many biological pathways, such as autophagy and mitochondria fission and fusion. This study aimed to alleviate the effects of hydrogen peroxide (H2O2)-induced persistent PARP-1 activation and MAM dysregulation by the usage of a PARP-1 inhibitor. Results showed that receptor-interacting protein kinase (RIPK) 1 inhibitor (necrostatin-1) and PARP-1 inhibitor (olaparib) protected retinal precursor cells from H2O2-induced death, while a pan-caspase inhibitor (Z-VAD-FMK) failed to protect R28 cells. Olaparib also alleviated H2O2-induced MAM dysregulation, as evidenced by decreased VDAC1/ITPR3 interactions and reduced mitochondrial membrane potential collapse. Additionally, olaparib also inhibited H2O2-induced autophagy. Inhibiting autophagic flux increased MAM signaling under both normal and oxidative conditions. Furthermore, H2O2 treatment caused a reduction in the protein level of mitofusin-2 (MFN2) in a dose- and time-dependent manner. Mfn2 knockdown was found to further magnify MAM dysregulation and mitochondrial dysfunction under normal and oxidative conditions. Mfn2 overexpression surprisingly enhanced H2O2-induced MAM signaling and failed to rescue H2O2-induced mitochondrial dysfunction. These results indicate that MAMs probably serve as a membrane source for oxidative stress-associated autophagy. MAM dysregulation also contributed to H2O2-induced PARP-1-dependent cell death. However, more studies are required to decipher the link between the modulation of Mfn2 expression, changes in MAM integrity, and alterations in mitochondrial performances.  相似文献   

16.
Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria‐targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER‐located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2‐dependent ER‐mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER‐targeted Mfn2 or an artificial ER‐mitochondria tether, indicating that manipulation of ER‐mitochondria contacts could be used to treat pathologic conditions involving Mfn2.  相似文献   

17.
Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)–mitochondria communication, as it allows for a more efficient transfer of Ca2+ into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER–mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3 h of GLP-1 treatment, paralleled by increased Ca2+ transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca2+ increases in GLP-1 treated cells. Inhibiting both Ca2+ release from the ER and Ca2+ entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER–mitochondria communication in VSMC, resulting in higher mitochondrial activity.  相似文献   

18.
Prior work has implicated viral protein R (Vpr) in the arrest of human immunodeficiency virus type 1 (HIV-1)-infected cells in the G2 phase of the cell cycle, associated with increased viral replication and host cell apoptosis. We and others have recently shown that virion infectivity factor (Vif ) also plays a role in the G2 arrest of HIV-1-infected cells. Here, we demonstrate that, paradoxically, at early time points postinfection, Vif expression blocks Vpr-mediated G2 arrest, while deletion of Vif from the HIV-1 genome leads to a marked increase in G2 arrest of infected CD4 T-cells. Consistent with this increased G2 arrest, T-cells infected with Vif-deleted HIV-1 express higher levels of Vpr protein than cells infected with wild-type virus. Further, expression of exogenous Vif inhibits the expression of Vpr, associated with a decrease in G2 arrest of both infected and transfected cells. Treatment with the proteasome inhibitor MG132 increases Vpr protein expression and G2 arrest in wild-type, but not Vif-deleted, NL4-3-infected cells, and in cells cotransfected with Vif and Vpr. In addition, Vpr coimmunoprecipitates with Vif in cotransfected cells in the presence of MG132. This suggests that inhibition of Vpr by Vif is mediated at least in part by proteasomal degradation, similar to Vif-induced degradation of APOBEC3G. Together, these data show that Vif mediates the degradation of Vpr and modulates Vpr-induced G2 arrest in HIV-1-infected T-cells.  相似文献   

19.
The human cytomegalovirus (HCMV) UL37 exon 1 protein (pUL37x1), also known as vMIA, is the predominant UL37 isoform during permissive infection. pUL37x1 is a potent antiapoptotic protein, which prevents cytochrome c release from mitochondria. The UL37x1 NH2-terminal bipartite localization signal, which remains uncleaved, targets UL37 proteins to the endoplasmic reticulum (ER) and then to mitochondria. Based upon our findings, we hypothesized that pUL37x1 traffics from the ER to mitochondria through direct contacts between the two organelles, provided by mitochondrion-associated membranes (MAMs). To facilitate its identification, we cloned and tagged the human phosphatidylserine synthase 1 (huPSS-1) cDNA, whose mouse homologue localizes almost exclusively in the MAM. Using subcellular fractionation of stable HeLa cell transfectants expressing mEGFP-huPSS-1, we found that HCMV pUL37x1 is present in purified microsomes, mitochondria, and MAM fractions. We further examined the trafficking of the full-length UL37 glycoprotein cleavage products, which divergently traffic either through the secretory apparatus or into mitochondria. Surprisingly, pUL37NH2 and gpUL37COOH were both detected in the ER and MAM fraction, even though only pUL37NH2 is preferentially imported into mitochondria but gpUL37COOH is not. To determine the sequences required for MAM importation, we examined pUL37x1 mutants that were partially defective for mitochondrial importation. Deletion mutants of the NH2-terminal UL37x1 mitochondrial localization signal were reduced in trafficking into the MAM, indicating partial overlap of MAM and mitochondrial targeting signals. Taken together, these results suggest that HCMV UL37 proteins traffic from the ER into the MAM, where they are sorted into either the secretory pathway or to mitochondrial importation.  相似文献   

20.
Vpr, one of the accessory molecules of HIV-1, has been demonstrated to arrest the cell cycle at the G2 phase. This Vpr-mediated cell cycle arrest is implicated to have an important role in the viral life cycle. In the present study, we quantitate the extent of Vpr-mediated cell cycle arrest with the use of a bicistronic vector consisting of a vpr gene and a green fluorescence protein sequence. Using this system, we examined the effect of several Vprs on cell cycle progression and growth of cells from different species quantitatively. We found that Vpr from the T-cell line-adapted HIV-1SF2 strain (Vpr2) could not significantly induce G2 arrest in HeLa cells but was able to induce it in 293T cells. However, strong inhibition of cell proliferation in HeLa cells as well as in 293T cells was observed by Vpr2. This ability of Vpr2 to inhibit cell proliferation without G2 arrest was also observed when expressed in monkey cell line. Analyses of chimeric Vprs revealed that this species-non-specific growth inhibitory activity of Vpr was not mediated solely by the C-terminal region of Vpr. These results indicated that the growth inhibitory activity of Vpr is independent of its G2 arresting activity. In addition, the species-non-specific nature of this activity suggests that Vpr has a novel mechanism to retard cell proliferation by influencing basic cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号