首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ventral eversible gland (VEG) in Lepidopteran larvae was first reported by De Geer in 1745. Secretions from VEG have been associated with defense against predators and the production of anti-aggregation pheromones; however, the role of the VEG in arthropod?Cplant interactions is still unclear. Here, we show that the ablation of Spodoptera littoralis larvae VEG affects early Arabidopsis thaliana responses to herbivory and insect??s oral secretions (OS). We measured the plasma transmembrane potential (Vm) variation in Arabidopsis mesophyll palisade cells upon feeding by untreated (N) and VEG-ablated (VEGA) S. littoralis larvae. OS from both N and VEGA were collected from larvae feeding on either artificial diet (ADOS) or Arabidopsis green leaves (GLOS) and tested for their ability to affect Vm on intact Arabidopsis leaves. Calcium and hydrogen peroxide (H2O2) signaling were also evaluated by confocal laser scanning microscopy by using the fluorescent probes calcium orange and Amplex red, respectively, upon herbivory by N and VEGA, and after application of either ADOS or GLOS from both N and VEGA to Arabidopsis leaves. Ablation of VEG prompted a significant reduction of the Vm depolarization and significantly reduced both cytosolic calcium concentration ([Ca2+]cyt) and H2O2 burst. OS extracted from VEGA larvae showed the same pattern, suggesting that a functional VEG is required for the synthesis of VEG secretions able to induce early responses in the fed plant tissues. These results suggest that VEG might contain elicitors able to trigger early responses (Vm depolarization, [Ca2+]cyt influx and H2O2 burst) of Arabidopsis to S. littoralis herbivory.  相似文献   

2.
3.
Ca2+ is a key player in plant cell responses to biotic and abiotic stress. Owing to the central role of cytosolic Ca2+ ([Ca2+]cyt) during early signaling and the need for precise determination of [Ca2+]cyt variations, we used a Cameleon YC 3.6 reporter protein expressed in Arabidopsis thaliana to quantify [Ca2+]cyt variations upon leaf mechanical damage (MD), herbivory by 3rd and 5th instar larvae of Spodoptera littoralis and S. littoralis oral secretions (OS) applied to MD. YC 3.6 allowed a clear distinction between MD and herbivory and discriminated between the two larvae instars. To our knowledge this is the first report of quantitative [Ca2+]cyt determination upon herbivory using a Cameleon calcium sensor.  相似文献   

4.
Herbivory results in an array of physiological changes in the host that are separable from the associated physical damage. We have made the surprising observation that an Arabidopsis line (pdko3) mutated in genes encoding plasmodesmal proteins is defective in some, but not all, of the typical plant responses to herbivory. We tested the responses of plasma transmembrane potential (Vm) depolarization, voltage gated K+ channel activity, cytosolic calcium [Ca2+]cyt and reactive oxygen species (ROS) (H2O2 and NO) release, shoot‐to‐root signaling, biosynthesis of the phytohormone jasmonic acid (JA) and the elicitation of volatile organic compounds (VOCs). Following herbivory and the release of factors present in insect oral secretions (including a putative β‐galactofuranose polysaccharide), both the pdko3 and wild type (WT) plants showed a increased accumulation of [Ca2+]cyt, NO and H2O2. In contrast, unlike WT plants, the mutant line showed an almost complete loss of voltage gated K+ channel activity and Vm depolarization, a loss of shoot‐induced root‐Vm depolarization, a loss of activation and regulation of gene expression of the JA defense pathway, and a much diminished release and altered profile of VOCs. The mutations in genes for plasmodesmal proteins have provided valuable genetic tools for the dissection of the complex spectrum of responses to herbivory and shown us that the responses to herbivory can be separated into a calcium‐activated oxidative response and a K+‐dependent Vm‐activated jasmonate response associated with the release of VOCs.  相似文献   

5.
AM Seufi  FH Galal  EE Hafez 《PloS one》2012,7(8):e42795

Background

Various proteins that display carbohydrate-binding activity in a Ca2+-dependent manner are classified into the C-type lectin family. They have one or two C-type carbohydrate-recognition domains (CRDs) composed of 110–130 amino acid residues in common. C-type lectins mediate cell adhesion, non-self recognition, and immuno-protection processes in immune responses and thus play significant roles in clearance of invaders, either as cell surface receptors for microbial carbohydrates or as soluble proteins existing in tissue fluids. The lectin of Spodoptera littoralis is still uncharacterized.

Methodology

A single orf encoding a deduced polypeptide consisting of an 18-residue signal peptide and a 291-residue mature peptide, termed SpliLec, was isolated from the haemolymph of the cotton leafworm, S. littoralis, after bacterial challenge using RACE-PCR. Sequence analyses of the data revealed that SpliLec consists of two CRDs. Short-form CRD1 and long-form CRD2 are stabilized by two and three highly conserved disulfide bonds, respectively. SpliLec shares homology with some dipteran lectins suggesting possible common ancestor. The purified SpliLec exhibited a 140-kDa molecular mass with a subunit molecular mass of 35 kDa. The hemagglutination assays of the SpliLec confirmed a thermally stable, multisugar-binding C-type lectin that binds different erythrocytes. The purified SpliLec agglutinated microorganisms and exhibited comparable antimicrobial activity against gram (+) and gram (−) bacteria too.

Conclusions

Our results suggested an important role of the SpliLec gene in cell adhesion and non-self recognition. It may cooperate with other AMPs in clearance of invaders of Spodoptera littoralis.  相似文献   

6.

Background

Frequently, in dioecious plants, female plants allocate more resources to reproduction than male plants. Therefore it is expected that asymmetrical allocation to reproduction may lead to a reproduction-growth tradeoff, whereby female plants grow less than male plants, but invest more in defenses and thus experience lower herbivory than male plants.

Methodology/Principal Findings

We tested these expectations by comparing resource allocation to reproduction, growth and defense and its consequences on herbivory in three sympatric dioecious Chamaedorea palms (C. alternans, C. pinnatifrons and C. ernesti-augusti) using a pair-wise design (replicated male/female neighboring plants) in a Mexican tropical rain forest. Our findings support the predictions. Biomass allocation to reproduction in C. pinnatifrons was 3-times higher in female than male plants, consistent with what is known in C. alternans and C. ernesti-augusti. Growth (height and leaf production rate and biomass production) was higher in male plants of all three species. Female plants of the three species had traits that suggest greater investment in defense, as they had 4–16% tougher leaves, and 8–18% higher total phenolic compounds concentration. Accordingly, female plants sustained 53–78% lower standing herbivory and 49–87% lower herbivory rates than male plants.

Conclusions/Significance

Our results suggests that resource allocation to reproduction in the studied palms is more costly to female plants and this leads to predictable intersexual differences in growth, defense and herbivory. We conclude that resource allocation to reproduction in plants can have important consequences that influence their interaction with herbivores. Since herbivory is recognized as an important selective force in plants, these results are of significance to our understanding of plant defense evolution.  相似文献   

7.

Background

There is conclusive evidence that there are fitness costs of plant defense and that herbivores can drive selection for defense. However, most work has focused on above-ground interactions, even though belowground herbivory may have greater impacts on individual plants than above-ground herbivory. Given the role of belowground plant structures in resource acquisition and storage, research on belowground herbivores has much to contribute to theories on the evolution of plant defense. Pocket gophers (Geomyidae) provide an excellent opportunity to study root herbivory. These subterranean rodents spend their entire lives belowground and specialize on consuming belowground plant parts.

Methodology and Principal Findings

We compared the root defenses of native forbs from mainland populations (with a history of gopher herbivory) to island populations (free from gophers for up to 500,000 years). Defense includes both resistance against herbivores and tolerance of herbivore damage. We used three approaches to compare these traits in island and mainland populations of two native California forbs: 1) Eschscholzia californica populations were assayed to compare alkaloid deterrents, 2) captive gophers were used to test the palatability of E. californica roots and 3) simulated root herbivory assessed tolerance to root damage in Deinandra fasciculata and E. californica. Mainland forms of E. californica contained 2.5 times greater concentration of alkaloids and were less palatable to gophers than island forms. Mainland forms of D. fasciculata and, to a lesser extent, E. californica were also more tolerant of root damage than island conspecifics. Interestingly, undamaged island individuals of D. fasciculata produced significantly more fruit than either damaged or undamaged mainland individuals.

Conclusions and Significance

These results suggest that mainland plants are effective at deterring and tolerating pocket gopher herbivory. Results also suggest that both forms of defense are costly to fitness and thus reduced in the absence of the putative target herbivore.  相似文献   

8.

Background

Bioluminescence in fireflies and click beetles is produced by a luciferase-luciferin reaction. The luminescence property and protein structure of firefly luciferase have been investigated, and its cDNA has been used for various assay systems. The chemical structure of firefly luciferin was identified as the ᴅ-form in 1963 and studies on the biosynthesis of firefly luciferin began early in the 1970’s. Incorporation experiments using 14C-labeled compounds were performed, and cysteine and benzoquinone/hydroquinone were proposed to be biosynthetic component for firefly luciferin. However, there have been no clear conclusions regarding the biosynthetic components of firefly luciferin over 30 years.

Methodology/Principal Findings

Incorporation studies were performed by injecting stable isotope-labeled compounds, including ʟ-[U-13C3]-cysteine, ʟ-[1-13C]-cysteine, ʟ-[3-13C]-cysteine, 1,4-[D6]-hydroquinone, and p-[2,3,5,6-D]-benzoquinone, into the adult lantern of the living Japanese firefly Luciola lateralis. After extracting firefly luciferin from the lantern, the incorporation of stable isotope-labeled compounds into firefly luciferin was identified by LC/ESI-TOF-MS. The positions of the stable isotope atoms in firefly luciferin were determined by the mass fragmentation of firefly luciferin.

Conclusions

We demonstrated for the first time that ᴅ- and ʟ-firefly luciferins are biosynthesized in the lantern of the adult firefly from two ʟ-cysteine molecules with p-benzoquinone/1,4-hydroquinone, accompanied by the decarboxylation of ʟ-cysteine.  相似文献   

9.

Background

The Asia-specific PLA2G7 994G-T transversion leads to V279F substitution within the lipoprotein-associated phospholipase-A2 (Lp-PLA2) and to absence of enzyme activity in plasma. This variant offers a unique natural experiment to assess the role of Lp-PLA2 in the pathogenesis of coronary artery disease (CAD) in humans. Given conflicting results from mostly small studies, a large two-stage case-control study was warranted.

Methodology/Principal Findings

PLA2G7 V279F genotypes were initially compared in 2890 male cases diagnosed with CAD before age 60 with 3128 male controls without CAD at age 50 and above and subsequently in a second independent male dataset of 877 CAD cases and 1230 controls. In the first dataset, the prevalence of the 279F null allele was 11.5% in cases and 12.8% in controls. After adjustment for age, body mass index, diabetes, smoking, glucose and lipid levels, the OR (95% CI) for CAD for this allele was 0.80 (0.66–0.97, p = 0.02). The results were very similar in the second dataset, despite lower power, with an allele frequency of 11.2% in cases and 12.5% in controls, leading to a combined OR of 0.80 (0.69–0.92), p = 0.002. The magnitude and direction of this genetic effect were fully consistent with large epidemiological studies on plasma Lp-PLA2 activity and CAD risk.

Conclusions

Natural deficiency in Lp-PLA2 activity due to carriage of PLA2G7 279F allele protects from CAD in Korean men. These results provide evidence for a causal relationship between Lp-PLA2 and CAD, and support pharmacological inhibition of this enzyme as an innovative way to prevent CAD.  相似文献   

10.
11.
Song RR  Zou L  Zhong R  Zheng XW  Zhu BB  Chen W  Liu L  Miao XP 《PloS one》2011,6(9):e25603

Background

HOXA1 and HOXB1 have been strongly posed as candidate genes for autism spectrum disorders (ASD) given their important role in the development of hindbrain. The A218G (rs10951154) in HOXA1 and the insertion variant in HOXB1 (nINS/INS, rs72338773) were of special interest for ASD but with inconclusive results. Thus, we conducted a meta-analysis integrating case-control and transmission/disequilibrium test (TDT) studies to clearly discern the effect of these two variants in ASD.

Methods and Findings

Multiple electronic databases were searched to identify studies assessing the A218G and/or nINS/INS variant in ASD. Data from case-control and TDT studies were analyzed in an allelic model using the Catmap software. A total of 10 and 7 reports were found to be eligible for meta-analyses of A218G and nINS/INS variant, respectively. In overall meta-analysis, the pooled OR for the 218G allele and the INS allele was 0.97 (95% CI = 0.76-1.25, P heterogeneity = 0.029) and 1.14 (95% CI = 0.97-1.33, P heterogeneity = 0.269), respectively. No significant association was also identified between these two variants and ASD risk in stratified analysis. Further, cumulative meta-analysis in chronologic order showed the inclination toward null-significant association for both variants with continual adding studies. Additionally, although the between-study heterogeneity regarding the A218G is not explained by study design, ethnicity, and sample size, the sensitive analysis indicated the stability of the result.

Conclusions

This meta-analysis suggests the HOXA1 A218G and HOXB1 nINS/INS variants may not contribute significantly to ASD risk.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by motor neuron death in the central nervous system. Vitamin D supplementation increases antioxidant activity, reduces inflammation and improves motor neuron survival. We have previously demonstrated that vitamin D3 supplementation at 10× the adequate intake improves functional outcomes in a mouse model of ALS.

Objective

To determine whether vitamin D deficiency influences functional and disease outcomes in a mouse model of ALS.

Methods

At age 25 d, 102 G93A mice (56 M, 46 F) were divided into two vitamin D3 groups: 1) adequate (AI; 1 IU D3/g feed) and 2) deficient (DEF; 0.025 IU D3/g feed). At age 113 d, tibialis anterior (TA), quadriceps (quads) and brain were harvested from 42 mice (22 M and 20 F), whereas the remaining 60 mice (34 M and 26 F) were followed to endpoint.

Results

During disease progression, DEF mice had 25% (P = 0.022) lower paw grip endurance AUC and 19% (P = 0.017) lower motor performance AUC vs. AI mice. Prior to disease onset (CS 2), DEF mice had 36% (P = 0.016) lower clinical score (CS) vs. AI mice. DEF mice reached CS 2 six days later vs. AI mice (P = 0.004), confirmed by a logrank test which revealed that DEF mice reached CS 2 at a 43% slower rate vs. AI mice (HR = 0.57; 95% CI: 0.38, 1.74; P = 0.002). Body weight-adjusted TA (AI: r = 0.662, P = 0.001; DEF: r = 0.622, P = 0.006) and quads (AI: r = 0.661, P = 0.001; DEF: r = 0.768; P<0.001) weights were strongly correlated with age at CS 2.

Conclusion

Vitamin D3 deficiency improves early disease severity and delays disease onset, but reduces performance in functional outcomes following disease onset, in the high-copy G93A mouse.  相似文献   

13.

Background

In vitro cell culture experiments with primary cells have reported that cell proliferation is retarded in the presence of ambient compared to physiological O2 levels. Cancer is primarily a disease of aberrant cell proliferation, therefore, studying cancer cells grown under ambient O2 may be undesirable. To understand better the impact of O2 on the propagation of cancer cells in vitro, we compared the growth potential of a panel of ovarian cancer cell lines under ambient (21%) or physiological (3%) O2.

Principal Findings

Our observations demonstrate that similar to primary cells, many cancer cells maintain an inherent sensitivity to O2, but some display insensitivity to changes in O2 concentration. Further analysis revealed an association between defective G2/M cell cycle transition regulation and O2 insensitivity resultant from overexpression of 14-3-3 σ. Targeting 14-3-3 σ overexpression with RNAi restored O2 sensitivity in these cell lines. Additionally, we found that metastatic ovarian tumors frequently overexpress 14-3-3 σ, which in conjunction with phosphorylated RB, results in poor prognosis.

Conclusions

Cancer cells show differential proliferative sensitivity to changes in O2 concentration. Although a direct link between O2 insensitivity and metastasis was not determined, this investigation showed that an O2 insensitive phenotype in cancer cells to correlate with metastatic tumor progression.  相似文献   

14.

Background

Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides.

Methodology/Principal Findings

We describe a “genome-to-lead” approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR) mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2) from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D1-like (Gαs-coupled) receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC50: AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM). Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC50 = 5.8±1.5 nM) and norepinephrine (EC50 = 760±180 nM), while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as “hits,” and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D1 dopamine receptor (hD1) revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2-selective compounds. In subsequent Ae. aegypti larval bioassays, significant mortality was observed for amitriptyline (93%) and doxepin (72%), confirming these chemistries as “leads” for insecticide discovery.

Conclusions/Significance

This research provides a “proof-of-concept” for a novel approach toward insecticide discovery, in which genome sequence data are utilized for functional characterization and chemical compound screening of GPCRs. We provide a pipeline useful for future prioritization, pharmacological characterization, and expanded chemical screening of additional GPCRs in disease-vector arthropods. The differential molecular and pharmacological properties of the mosquito dopamine receptors highlight the potential for the identification of target-specific chemistries for vector-borne disease management, and we report the first study to identify dopamine receptor antagonists with in vivo toxicity toward mosquitoes.  相似文献   

15.

Aim/Hypothesis

Rat pancreatic islet cell apoptosis is minimal after prolonged culture in 10 mmol/l glucose (G10), largely increased in 5 mmol/l glucose (G5) and moderately increased in 30 mmol/l glucose (G30). This glucose-dependent asymmetric V-shaped profile is preceded by parallel changes in the mRNA levels of oxidative stress-response genes like Metallothionein 1a (Mt1a). In this study, we tested the effect of ZnCl2, a potent inducer of Mt1a, on apoptosis, mitochondrial oxidative stress and alterations of glucose-induced insulin secretion (GSIS) induced by prolonged exposure to low and high vs. intermediate glucose concentrations.

Methods

Male Wistar rat islets were cultured in RPMI medium. Islet gene mRNA levels were measured by RTq-PCR. Apoptosis was quantified by measuring islet cytosolic histone-associated DNA fragments and the percentage of TUNEL-positive β-cells. Mitochondrial thiol oxidation was measured in rat islet cell clusters expressing “redox sensitive GFP” targeted to the mitochondria (mt-roGFP1). Insulin secretion was measured by RIA.

Results

As observed for Mt1a mRNA levels, β-cell apoptosis and loss of GSIS, culture in either G5 or G30 vs. G10 significantly increased mt-roGFP1 oxidation. While TPEN decreased Mt1a/2a mRNA induction by G5, addition of 50–100 µM ZnCl2 to the culture medium strongly increased Mt1a/2a mRNA and protein levels, reduced early mt-roGFP oxidation and significantly decreased late β-cell apoptosis after prolonged culture in G5 or G30 vs. G10. It did not, however, prevent the loss of GSIS under these culture conditions.

Conclusion

ZnCl2 reduces mitochondrial oxidative stress and improves rat β-cell survival during culture in the presence of low and high vs. intermediate glucose concentrations without improving their acute GSIS.  相似文献   

16.

Hypothesis

Serum- and Glucocorticoid-inducible Kinase 1 (SGK1) is involved in the regulation of insulin secretion and may represent a candidate gene for the development of type 2 diabetes mellitus in humans.

Methods

Three independent European populations were analyzed for the association of SGK1 gene (SGK) variations and insulin secretion traits. The German TUEF project provided the screening population (N = 725), and four tagging SNPs (rs1763527, rs1743966, rs1057293, rs9402571) were investigated. EUGENE2 (N = 827) served as a replication cohort for the detected associations. Finally, the detected associations were validated in the METSIM study, providing 3798 non-diabetic and 659 diabetic (type 2) individuals.

Results

Carriers of the minor G allele in rs9402571 had significantly higher C-peptide levels in the 2 h OGTT (+10.8%, p = 0.04; dominant model) and higher AUCC-Peptide/AUCGlc ratios (+7.5%, p = 0.04) compared to homozygous wild type TT carriers in the screening population. As interaction analysis for BMI×rs9402571 was significant (p = 0.04) for the endpoint insulin secretion, we stratified the TUEF cohort for BMI, using a cut off point of BMI = 25. The effect on insulin secretion only remained significant in lean TUEF participants (BMI≤25). This finding was replicated in lean EUGENE2 rs9402571 minor allele carriers, who had a significantly higher AUCIns/AUCGlc (TT: 226±7, XG: 246±9; p = 0.019). Accordingly, the METSIM trial revealed a lower prevalence of type 2 diabetes (OR: 0.85; 95%CI: 0.71–1.01; p = 0.065, dominant model) in rs9402571 minor allele carriers.

Conclusions

The rs9402571 SGK genotype associates with increased insulin secretion in lean non-diabetic TUEF/EUGENE2 participants and with lower diabetes prevalence in METSIM. Our study in three independent European populations supports the conclusion that SGK variability affects diabetes risk.  相似文献   

17.

Background

Natural products are well recognized as sources of drugs in several human ailments. In the present work, we carried out a preliminary screening of six natural compounds, xanthone V1 (1); 2-acetylfuro-1,4-naphthoquinone (2); physcion (3); bisvismiaquinone (4); vismiaquinone (5); 1,8-dihydroxy-3-geranyloxy-6-methylanthraquinone (6) against MiaPaCa-2 pancreatic and CCRF-CEM leukemia cells and their multidrug-resistant subline, CEM/ADR5000. Compounds 1 and 2 were then tested in several other cancer cells and their possible mode of action were investigated.

Methodology/Findings

The tested compounds were previously isolated from the Cameroonian medicinal plants Vismia laurentii (1, 3, 4, 5 and 6) and Newbouldia laevis (2). The preliminary cytotoxicity results allowed the selection of xanthone V1 and 2-acetylfuro-1,4-naphthoquinone, which were then tested on a panel of cancer cell lines. The study was also extended to the analysis of cell cycle distribution, apoptosis induction, caspase 3/7 activation and the anti-angiogenic properties of xanthone V1 and 2-acetylfuro-1,4-naphthoquinone. IC50 values around or below 4 µg/ml were obtained on 64.29% and 78.57% of the tested cancer cell lines for xanthone V1 and 2-acetylfuro-1,4-naphthoquinone, respectively. The most sensitive cell lines (IC50<1 µg/ml) were breast MCF-7 (to xanthone V1), cervix HeLa and Caski (to xanthone V1 and 2-acetylfuro-1,4-naphthoquinone), leukemia PF-382 and melanoma colo-38 (to 2-acetylfuro-1,4-naphthoquinone). The two compounds showed respectively, 65.8% and 59.6% inhibition of the growth of blood capillaries on the chorioallantoic membrane of quail eggs in the anti-angiogenic assay. Upon treatment with two fold IC50 and after 72 h, the two compounds induced cell cycle arrest in S-phase, and also significant apoptosis in CCRF-CEM leukemia cells. Caspase 3/7 was activated by xanthone V1.

Conclusions/Significance

The overall results of the present study provided evidence for the cytotoxicity of compounds xanthone V1 and 2-acetylfuro-1,4-naphthoquinone, and bring supportive data for future investigations that will lead to their use in cancer therapy.  相似文献   

18.
Ma MJ  Wang HB  Li H  Yang JH  Yan Y  Xie LP  Qi YC  Li JL  Chen MJ  Liu W  Cao WC 《PloS one》2011,6(8):e24069

Background

Susceptibility to tuberculosis is not only determined by Mycobacterium tuberculosis infection, but also by the genetic component of the host. Macrophage receptor with a collagenous structure (MARCO) is essential components required for toll like receptor-signaling in macrophage response to Mycobacterium tuberculosis, which may contribute to tuberculosis risk.

Principal Findings

To specifically investigated whether single nucleotide polymorphisms (SNPs) in MARCO gene are associated with pulmonary tuberculosis in Chinese Han population. By selecting tagging SNPs in MARCO gene, 17 tag SNPs were identified and genotyped in 923 pulmonary tuberculosis patients and 1033 healthy control subjects using a hospital based case-control association study. Single-point and haplotype analysis revealed an association in intron and exon region of MARCO gene. One SNP (rs17009726) was associated with susceptibility to pulmonary tuberculosis, where the carriers of the G allele had a 1.65 fold (95% CI = 1.32–2.05, p corrected = 9.27E–5) increased risk of pulmonary tuberculosis. Haplotype analysis revealed that haplotype GC containing G allele of 17009726 and haplotype TGCC (rs17795618T/A, rs1371562G/T, rs6761637T/C, rs2011839C/T) were also associated with susceptibility to pulmonary tuberculosis (p corrected = 0.0001 and 0.029, respectively).

Conclusions

Our study suggested that genetic variants in MARCO gene were associated with pulmonary tuberculosis susceptibility in Chinese Han population, and the findings emphasize the importance of MARCO mediated immune responses in the pathogenesis of tuberculosis.  相似文献   

19.
Xie C  Tang X  Xu W  Diao R  Cai Z  Chan HC 《PloS one》2010,5(12):e15255

Background

Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated.

Methodology/Principal Findings

In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl and HCO3 , in mediating prostate HCO3 secretion and its possible role in bacterial killing. Upon Escherichia coli (E coli)-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II), along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO3 content (>50 mM), rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO3 on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E coli. The relevance of the CFTR-mediated HCO3 secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues.

Conclusions/Significance

The CFTR and its mediated HCO3 secretion may be up-regulated in prostatitis as a host defense mechanism.  相似文献   

20.

Background

New drugs are needed to treat visceral leishmaniasis (VL) because the current therapies are toxic, expensive, and parasite resistance may weaken drug efficacy. We established a novel ex vivo splenic explant culture system from hamsters infected with luciferase-transfected Leishmania donovani to screen chemical compounds for anti-leishmanial activity.

Methodology/Principal Findings

This model has advantages over in vitro systems in that it: 1) includes the whole cellular population involved in the host-parasite interaction; 2) is initiated at a stage of infection when the immunosuppressive mechanisms that lead to progressive VL are evident; 3) involves the intracellular form of Leishmania; 4) supports parasite replication that can be easily quantified by detection of parasite-expressed luciferase; 5) is adaptable to a high-throughput screening format; and 6) can be used to identify compounds that have both direct and indirect anti-parasitic activity. The assay showed excellent discrimination between positive (amphotericin B) and negative (vehicle) controls with a Z'' Factor >0.8. A duplicate screen of 4 chemical libraries containing 4,035 compounds identified 202 hits (5.0%) with a Z score of <–1.96 (p<0.05). Eighty-four (2.1%) of the hits were classified as lead compounds based on the in vitro therapeutic index (ratio of the compound concentration causing 50% cytotoxicity in the HepG2 cell line to the concentration that caused 50% reduction in the parasite load). Sixty-nine (82%) of the lead compounds were previously unknown to have anti-leishmanial activity. The most frequently identified lead compounds were classified as quinoline-containing compounds (14%), alkaloids (10%), aromatics (11%), terpenes (8%), phenothiazines (7%) and furans (5%).

Conclusions/Significance

The ex vivo splenic explant model provides a powerful approach to identify new compounds active against L. donovani within the pathophysiologic environment of the infected spleen. Further in vivo evaluation and chemical optimization of these lead compounds may generate new candidates for preclinical studies of treatment for VL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号