共查询到20条相似文献,搜索用时 0 毫秒
1.
We are interested in detecting homologous genomic DNA sequences with the goal of locating approximate inverted, interspersed, and tandem repeats. Standard search techniques start by detecting small matching parts, called seeds, between a query sequence and database sequences. Contiguous seed models have existed for many years. Recently, spaced seeds were shown to be more sensitive than contiguous seeds without increasing the random hit rate. To determine the superiority of one seed model over another, a model of homologous sequence alignment must be chosen. Previous studies evaluating spaced and contiguous seeds have assumed that matches and mismatches occur within these alignments, but not insertions and deletions (indels). This is perhaps appropriate when searching for protein coding sequences (<5% of the human genome), but is inappropriate when looking for repeats in the majority of genomic sequence where indels are common. In this paper, we assume a model of homologous sequence alignment which includes indels and we describe a new seed model, called indel seeds, which explicitly allows indels. We present a waiting time formula for computing the sensitivity of an indel seed and show that indel seeds significantly outperform contiguous and spaced seeds when homologies include indels. We discuss the practical aspect of using indel seeds and finally we present results from a search for inverted repeats in the dog genome using both indel and spaced seeds. 相似文献
2.
Huang Z Wu Y Robertson J Feng L Malmberg RL Cai L 《Bioinformatics (Oxford, England)》2008,24(20):2281-2287
MOTIVATION: Searching genomes for non-coding RNAs (ncRNAs) by their secondary structure has become an important goal for bioinformatics. For pseudoknot-free structures, ncRNA search can be effective based on the covariance model and CYK-type dynamic programming. However, the computational difficulty in aligning an RNA sequence to a pseudoknot has prohibited fast and accurate search of arbitrary RNA structures. Our previous work introduced a graph model for RNA pseudoknots and proposed to solve the structure-sequence alignment by graph optimization. Given k candidate regions in the target sequence for each of the n stems in the structure, we could compute a best alignment in time O(k(t)n) based upon a tree width t decomposition of the structure graph. However, to implement this method to programs that can routinely perform fast yet accurate RNA pseudoknot searches, we need novel heuristics to ensure that, without degrading the accuracy, only a small number of stem candidates need to be examined and a tree decomposition of a small tree width can always be found for the structure graph. RESULTS: The current work builds on the previous one with newly developed preprocessing algorithms to reduce the values for parameters k and t and to implement the search method into a practical program, called RNATOPS, for RNA pseudoknot search. In particular, we introduce techniques, based on probabilistic profiling and distance penalty functions, which can identify for every stem just a small number k (e.g. k 相似文献
3.
MOTIVATION: Filtration is an important technique used to speed up local alignment as exemplified in the BLAST programs. Recently, Ma et al. discovered that better filtering can be achieved by spacing out the matching positions according to a certain pattern, instead of contiguous positions to trigger a local alignment in their PatternHunter program. Such a match pattern is called a spaced seed. RESULTS: Our numerical computation shows that the ranks of spaced seeds (based on sensitivity) change with the sequences similarity. Since homologous sequences may have diverse similarity, we assess the sensitivity of spaced seeds over a range of similarity levels and present a list of good spaced seeds for facilitating homology search in DNA genomic sequences. We validate that the listed spaced seeds are indeed more sensitive using three arbitrarily chosen pairs of DNA genomic sequences. 相似文献
4.
MOTIVATION: Homology search finds similar segments between two biological sequences, such as DNA or protein sequences. The introduction of optimal spaced seeds in PatternHunter has increased both the sensitivity and the speed of homology search, and it has been adopted by many alignment programs such as BLAST. With the further improvement provided by multiple spaced seeds in PatternHunterII, Smith-Waterman sensitivity is approached at BLASTn speed. However, computing optimal multiple spaced seeds was proved to be NP-hard and current heuristic algorithms are all very slow (exponential). RESULTS: We give a simple algorithm which computes good multiple seeds in polynomial time. Due to a completely different approach, the difference with respect to the previous methods is dramatic. The multiple spaced seed of PatternHunterII, with 16 weight 11 seeds, was computed in 12 days. It takes us 17 s to find a better one. Our approach changes the way of looking at multiple spaced seeds. 相似文献
5.
MOTIVATION: It is widely recognized that homology search and ortholog clustering are very useful for analyzing biological sequences. However, recent growth of sequence database size makes homolog detection difficult, and rapid and accurate methods are required. RESULTS: We present a novel method for fast and accurate homology detection, assuming that the Smith-Waterman (SW) scores between all similar sequence pairs in a target database are computed and stored. In this method, SW alignment is computed only if the upper bound, which is derived from our novel inequality, is higher than the given threshold. In contrast to other methods such as FASTA and BLAST, this method is guaranteed to find all sequences whose scores against the query are higher than the specified threshold. Results of computational experiments suggest that the method is dozens of times faster than SSEARCH if genome sequence data of closely related species are available. 相似文献
6.
Piotr Berman Paul Bertone Bhaskar Dasgupta Mark Gerstein Ming-Yang Kao Michael Snyder 《Journal of computational biology》2004,11(4):766-785
In this paper, we consider several variations of the following basic tiling problem: given a sequence of real numbers with two size-bound parameters, we want to find a set of tiles of maximum total weight such that each tiles satisfies the size bounds. A solution to this problem is important to a number of computational biology applications such as selecting genomic DNA fragments for PCR-based amplicon microarrays and performing homology searches with long sequence queries. Our goal is to design efficient algorithms with linear or near-linear time and space in the normal range of parameter values for these problems. For this purpose, we first discuss the solution to a basic online interval maximum problem via a sliding-window approach and show how to use this solution in a nontrivial manner for many of the tiling problems introduced. We also discuss NP-hardness results and approximation algorithms for generalizing our basic tiling problem to higher dimensions. Finally, computational results from applying our tiling algorithms to genomic sequences of five model eukaryotes are reported. 相似文献
7.
Zhang L 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2007,4(3):496-505
In homology search, good spaced seeds have higher sensitivity for the same cost (weight). However, elucidating the mechanism that confers power to spaced seeds and characterizing optimal spaced seeds still remain unsolved. This paper investigates these two important open questions by formally analyzing the average number of non-overlapping hits and the hit probability of a spaced seed in the Bernoulli sequence model. We prove that when the length of a non-uniformly spaced seed is bounded above by an exponential function of the seed weight, the seed outperforms strictly the traditional consecutive seed of the same weight in both 1) the average number of non-overlapping hits and 2) the asymptotic hit probability. This clearly answers the first problem mentioned above in the Bernoulli sequence model. The theoretical study in this paper also gives a new solution to finding long optimal seeds. 相似文献
8.
Brown DG 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2005,2(1):29-38
We present a framework for improving local protein alignment algorithms. Specifically, we discuss how to extend local protein aligners to use a collection of vector seeds or ungapped alignment seeds to reduce noise hits. We model picking a set of seed models as an integer programming problem and give algorithms to choose such a set of seeds. While the problem is NP-hard, and Quasi-NP-hard to approximate to within a logarithmic factor, it can be solved easily in practice. A good set of seeds we have chosen allows four to five times fewer false positive hits, while preserving essentially identical sensitivity as BLASTP. 相似文献
9.
A new method for homology search of DNA sequences is suggested. This method may be used to find extensive and not strong homologies with point mutations and deletions. The running program time for comparing sequences is less then the dynamic program algorithms at least at two orders of magnitude. It makes possible to use the method for homology searching throughover the nucleotide bank by personal computers. 相似文献
10.
PfamAlyzer is a Java applet that enables exploration of Pfam domain architectures using a user-friendly graphical interface. It can search the UniProt protein database for a domain pattern. Domain patterns similar to the query are presented graphically by PfamAlyzer either in a ranked list or pinned to the tree of life. Such domain-centric homology search can assist identification of distant homologs with shared domain architecture. AVAILABILITY: PfamAlyzer has been integrated with the Pfam database and can be accessed at http://pfam.cgb.ki.se/pfamalyzer. 相似文献
11.
12.
Pánek J Krásny L Bobek J Jezková E Korelusová J Vohradsky J 《Nucleic acids research》2011,39(8):3418-3426
Non-coding RNAs (ncRNAs) are regulatory molecules encoded in the intergenic or intragenic regions of the genome. In prokaryotes, biocomputational identification of homologs of known ncRNAs in other species often fails due to weakly evolutionarily conserved sequences, structures, synteny and genome localization, except in the case of evolutionarily closely related species. To eliminate results from weak conservation, we focused on RNA structure, which is the most conserved ncRNA property. Analysis of the structure of one of the few well-studied bacterial ncRNAs, 6S RNA, demonstrated that unlike optimal and consensus structures, suboptimal structures are capable of capturing RNA homology even in divergent bacterial species. A computational procedure for the identification of homologous ncRNAs using suboptimal structures was created. The suggested procedure was applied to strongly divergent bacterial species and was capable of identifying homologous ncRNAs. 相似文献
13.
14.
Chaudhary R Burleigh JG Fernández-Baca D 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2012,9(4):1004-1013
A Robinson-Foulds (RF) supertree for a collection of input trees is a tree containing all the species in the input trees that is at minimum total RF distance to the input trees. Thus, an RF supertree is consistent with the maximum number of splits in the input trees. Constructing RF supertrees for rooted and unrooted data is NP-hard. Nevertheless, effective local search heuristics have been developed for the restricted case where the input trees and the supertree are rooted. We describe new heuristics, based on the Edge Contract and Refine (ECR) operation, that remove this restriction, thereby expanding the utility of RF supertrees. Our experimental results on simulated and empirical data sets show that our unrooted local search algorithms yield better supertrees than those obtained from MRP and rooted RF heuristics in terms of total RF distance to the input trees and, for simulated data, in terms of RF distance to the true tree. 相似文献
16.
17.
MOTIVATION: As more genomes are sequenced, the demand for fast gene classification techniques is increasing. To analyze a newly sequenced genome, first the genes are identified and translated into amino acid sequences which are then classified into structural or functional classes. The best-performing protein classification methods are based on protein homology detection using sequence alignment methods. Alignment methods have recently been enhanced by discriminative methods like support vector machines (SVMs) as well as by position-specific scoring matrices (PSSM) as obtained from PSI-BLAST. However, alignment methods are time consuming if a new sequence must be compared to many known sequences-the same holds for SVMs. Even more time consuming is to construct a PSSM for the new sequence. The best-performing methods would take about 25 days on present-day computers to classify the sequences of a new genome (20,000 genes) as belonging to just one specific class--however, there are hundreds of classes. Another shortcoming of alignment algorithms is that they do not build a model of the positive class but measure the mutual distance between sequences or profiles. Only multiple alignments and hidden Markov models are popular classification methods which build a model of the positive class but they show low classification performance. The advantage of a model is that it can be analyzed for chemical properties common to the class members to obtain new insights into protein function and structure. We propose a fast model-based recurrent neural network for protein homology detection, the 'Long Short-Term Memory' (LSTM). LSTM automatically extracts indicative patterns for the positive class, but in contrast to profile methods it also extracts negative patterns and uses correlations between all detected patterns for classification. LSTM is capable to automatically extract useful local and global sequence statistics like hydrophobicity, polarity, volume, polarizability and combine them with a pattern. These properties make LSTM complementary to alignment-based approaches as it does not use predefined similarity measures like BLOSUM or PAM matrices. RESULTS: We have applied LSTM to a well known benchmark for remote protein homology detection, where a protein must be classified as belonging to a SCOP superfamily. LSTM reaches state-of-the-art classification performance but is considerably faster for classification than other approaches with comparable classification performance. LSTM is five orders of magnitude faster than methods which perform slightly better in classification and two orders of magnitude faster than the fastest SVM-based approaches (which, however, have lower classification performance than LSTM). Only PSI-BLAST and HMM-based methods show comparable time complexity as LSTM, but they cannot compete with LSTM in classification performance. To test the modeling capabilities of LSTM, we applied LSTM to PROSITE classes and interpreted the extracted patterns. In 8 out of 15 classes, LSTM automatically extracted the PROSITE motif. In the remaining 7 cases alternative motifs are generated which give better classification results on average than the PROSITE motifs. AVAILABILITY: The LSTM algorithm is available from http://www.bioinf.jku.at/software/LSTM_protein/. 相似文献
18.
An extremely fast method of searching a nucleic acid sequence database against a probe sequence is described. The method is based on the detection of deviation from expected number and deviation from random spatial distribution of sub-sequences which are unique within a sequence, and shared between that sequence and the probe. On an IBM 3081 computer, total search of an encoded form of the EMBL nucleic acid sequence database with a 1 kbase probe sequence is completed in a few seconds. Previous best methods for a similar task required a few minutes. 相似文献
19.
Franco P Preparata Louxin Zhang Kwok Pui Choi 《Journal of computational biology》2005,12(9):1137-1152
It has been observed that in homology search gapped seeds have better sensitivity than ungapped ones for the same cost (weight). In this paper, we propose a probability leakage model (a dissipative Markov system) to elucidate the mechanism that confers power to spaced seeds. Based on this model, we identify desirable features of gapped search seeds and formulate an extremely efficient procedure for seed design: it samples from the set of spaced seed exhibiting those features, evaluates their sensitivity, and then selects the best. The sensitivity of the constructed seeds is negligibly less than that of the corresponding known optimal seeds. While the challenging mathematical question of characterizing optimal search seeds remains open, we believe that our eminently efficient and effective approach represents a satisfactory solution from a practitioner's viewpoint. 相似文献
20.
PatternHunter: faster and more sensitive homology search 总被引:15,自引:0,他引:15
MOTIVATION: Genomics and proteomics studies routinely depend on homology searches based on the strategy of finding short seed matches which are then extended. The exploding genomic data growth presents a dilemma for DNA homology search techniques: increasing seed size decreases sensitivity whereas decreasing seed size slows down computation. RESULTS: We present a new homology search algorithm 'PatternHunter' that uses a novel seed model for increased sensitivity and new hit-processing techniques for significantly increased speed. At Blast levels of sensitivity, PatternHunter is able to find homologies between sequences as large as human chromosomes, in mere hours on a desktop. AVAILABILITY: PatternHunter is available at http://www.bioinformaticssolutions.com, as a commercial package. It runs on all platforms that support Java. PatternHunter technology is being patented; commercial use requires a license from BSI, while non-commercial use will be free. 相似文献