首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Fan Z  Liu S  Liu Y  Liao L  Zhang X  Yue B 《PloS one》2012,7(5):e38184
The southeastern margin of the Tibetan Plateau (SEMTP) is a particularly interesting region due to its topographic complexity and unique geologic history, but phylogeographic studies that focus on this region are rare. In this study, we investigated the phylogeography of the South China field mouse, Apodemus draco, in order to assess the role of geologic and climatic events on the Tibetan Plateau in shaping its genetic structure. We sequenced mitochondrial cytochrome b (cyt b) sequences in 103 individuals from 47 sampling sites. In addition, 23 cyt b sequences were collected from GenBank for analyses. Phylogenetic, demographic and landscape genetic methods were conducted. Seventy-six cyt b haplotypes were found and the genetic diversity was extremely high (π = 0.0368; h = 0.989). Five major evolutionary clades, based on geographic locations, were identified. Demographic analyses implied subclade 1A and subclade 1B experienced population expansions at about 0.052-0.013 Mya and 0.014-0.004 Mya, respectively. The divergence time analysis showed that the split between clade 1 and clade 2 occurred 0.26 Mya, which fell into the extensive glacial period (EGP, 0.5-0.17 Mya). The divergence times of other main clades (2.20-0.55 Mya) were congruent with the periods of the Qingzang Movement (3.6-1.7 Mya) and the Kun-Huang Movement (1.2-0.6 Mya), which were known as the most intense uplift events in the Tibetan Plateau. Our study supported the hypothesis that the SEMTP was a large late Pleistocene refugium, and further inferred that the Gongga Mountain Region and Hongya County were glacial refugia for A. draco in clade 1. We hypothesize that the evolutionary history of A. draco in the SEMTP primarily occurred in two stages. First, an initial divergence would have been shaped by uplift events of the Tibetan Plateau. Then, major glaciations in the Pleistocene added complexity to its demographic history and genetic structure.  相似文献   

2.
Chinese species of the genus Niviventer, predominantly distributed in the southeastern Tibetan Plateau and in Taiwan, are a diverse group and have not yet received a thorough molecular phylogenetic analysis. Here, we reconstructed the phylogenetic relationships of 32 specimens representing nine Chinese species of Niviventer, based on sequences of the complete mitochondrial cytochrome b gene. Maximum parsimony, maximum likelihood and Bayesian analysis resulted in three consistent trees, each supported by high bootstrap values. The results showed that the Niviventer species included here are monophyletic. The nine species were classified into three distinct clades: clade A with Niviventer brahma, N. confucianus, N. coxingi, N. culturatus, N. eha and N. fulvescens; clade B with N. andersoni and N. excelsior; clade C with N. cremoriventer. Our results also suggested that N. culturatus should be a valid species rather than a subspecies of N. confucianus. Divergence times among species were calibrated according to the middle-late Pleistocene (1.2-0.13 Mya) fossil records of N. confucianus. The results demonstrated that the first radiation event of the genus Niviventer occurred in early Pleistocene (about 1.66 Mya), followed by the divergence of clades A and B at about 1.46 Mya. Most of the extant Niviventer species appeared during early to middle Pleistocene (about 1.29-0.67 Mya). These divergence times are coincidental with the last uplift events of the Tibetan Plateau, Kun-Huang movement, Pleistocene glaciations and the vicariant formation of Taiwan Strait. Consequently geographical events and Pleistocene glaciations have played a great role in the diversification of Niviventer.  相似文献   

3.
The Tibetan gazelle (Procapra picticaudata) is a threatened species and distributed on the Qinghai-Tibet Plateau of China (Qinghai Province, Tibet Autonomous Region and the adjacent Gansu Province, Sichuan Province, and Xinjiang Uigur Autonomous Region). Small peripheral populations of Tibetan gazelle were once found in northern Sikkim and Ladakh, but now these are close to extinction. To describe the evolutionary history and to assess the genetic diversity within this monotypic species and population structure among different geographic locations in China, we sequenced mitochondrial DNA from the control region (CR) and cytochrome (cyt) b gene for 46 individuals from 12 geographic localities in Qinghai, Tibet, Xinjiang, Gansu, and Sichuan. A total of 25 CR haplotypes and 16 cyt b haplotypes were identified from these gazelle samples. CR haplotype diversity (0.98+/-0.01) and nucleotide diversity (0.08+/-0.009) were both high. Phylogenetic trees indicate that the Tibetan gazelle in China can be divided into three main clades: Tibet, Sichuan (SCH) and Qinghai-Arjin Shan-Kekexili (QH-ARJ-KKXL). Analysis of molecular variance (AMOVA) and network analysis consistently support this geographic structure in both datasets. Significant differentiation between populations argues for the presence of management units (MUs). Such differentiation may reflect a geographic separation resulting from the uplift of the Qinghai-Tibet Plateau during the Late Pliocene and Pleistocene. Mismatch distribution analysis implies that Tibetan gazelle has undergone complex population changes. We suggest that the present population structure has resulted from habitat fragmentation during the recent glacial period on the Qinghai-Tibet Plateau and population expansion from glacial refugia after the glacial period. It is likely that the present populations of Tibetan gazelle exhibit a pattern reminiscent of several bottlenecks and expansions in the recent past.  相似文献   

4.
DNA barcoding is a powerful approach for characterizing species of organisms,especially those with almost identical morphological features, thereby helping to to establish phylogenetic relationships and reveal evolutionary histories. In this study, we chose a 648-bp segment of the mitochondrial gene, cytochrome c oxidase subunit 1 (COI), as a standard barcode region to establish phylogenetic relationships among brine shrimp (Artemia) species from major habitats around the world and further focused on the biodiversity of Artemia species in China, especially in the Tibetan Plateau. Samples from five major salt lakes of the Tibetan Plateau located at altitudes over 4,000 m showed clear differences from other Artemia populations in China. We also observed two consistent amino acid changes, 153A/V and 183L/F, in the COI gene between the high and low altitude species in China.Moreover, indels in the COI sequence were identified in cyst and adult samples unique to the Co Qen population from the Tibetan Plateau, demonstrating the need for additional investigations of the mitochondrial genome among Tibetan Artemia populations.  相似文献   

5.
Freshwater fish belonging to the genus Schizopygopsis are widespread in drainages throughout the Qinghai‐Tibetan Plateau and, thus, a model group with which to investigate how paleo‐drainage changes linked to historical uplifting within the Qinghai‐Tibetan Plateau influence speciation. To date, the phylogenetic and taxonomic relationships within Schizopygopsis remain controversial. In this study, we constructed a comprehensive molecular phylogeny of Schizopygopsis based on six mitochondrial gene sequences. We compared the taxonomic relationships revealed by this phylogeny with those obtained from morphological data. We also used this phylogeny to assess the extent to which the evolution of Schizopygopsis has been driven by paleo‐drainage changes linked to uplifting of the Qinghai‐Tibetan Plateau. Results indicated that all Schizopygopsis taxa formed a monophyletic group comprising five major clades, which were inconsistent with the taxonomic relationships based on morphology for this group. Our results also strongly supported the validity of S. anteroventris and S. microcephalus as distinct species within Schizopygopsis. Molecular calibrations showed that species within the middle Yangtze species diverged earlier (~4.5 Mya) than species within the Indus River (~3.0 Mya), the Mekong River (~2.8 Mya) and the Tsangpo + Salween rivers (~2.5 Mya). The most recent evolutionary splits occurred among species from the upper and lower Yangtze River, the Yellow River and the Qiadam Basin at about 1.8 to 0.3 Mya. Our molecular evidence and use of the molecular clock calibration have allowed us to associate speciation events within the genus Schizopygopsis to the formation and separation of paleo‐drainage connections caused by tectonic events during the uplifting of the Qinghai‐Tibetan Plateau (~4.5 Mya). This work underlines the dominant role of vicariance in shaping the evolutionary history of the genus Schizopygopsis. Further research using multiple loci and more extensive sampling will reveal a more complete picture of the phylogenetic relationships and biogeography of Schizopygopsis fishes.  相似文献   

6.
We investigated phylogenetic structure and morphological variation in Asian mountain pitvipers of the genus Ovophis (comprising 3-4 species some of which are considered polytypic) by sequencing four mitochondrial markers (cytochrome b, NADH dehydrogenase subunit 4, 12S and 16S rRNA) from 72 specimens, and analysed them in a Bayesian framework together with another 26 sequences from closely related genera. We reconstructed the region of origin and direction of dispersal of the major clades, and of Ovophis as a whole, using likelihood framework analysis. We also defined morphogroups from 280 specimens from across the range of Ovophis to allow the geographic extent of the major clades to be determined, as well as to allow inclusion of specimens lacking sequence data. Phylogenetic analyses confirmed the monophyly of Ovophis as currently defined, and revealed that it contains two major lineages, eastern (mainly Chinese) and western, with both occurring in southwestern China, central and northern Viet Nam. The most likely origin of the genus, and of individual lineages, coincides with the northeastern boundary of the Indomalayan hotspot. Major diversification in this species group likely corresponded to major climatic changes arising from the uplift of the Tibetan Plateau in the early to mid Miocene. With reference to the defined morphogroups, we suggest that at least five species are present and provide appropriate names. With a few exceptions, the newly defined species boundaries do not correspond to the existing taxonomy.  相似文献   

7.
Paleogeological events and Pleistocene climatic fluctuations have had profound influences on the genetic patterns and phylogeographic structure of species in southern China. In this study, we investigated the population genetic structure and Phylogeography of the Odorrana schmackeri species complex, mountain stream-dwelling odorous frogs, endemic to southern China. We obtained mitochondrial sequences (1,151bp) of the complete ND2 gene and two flanking tRNAs of 511 individuals from 25 sites for phylogeographic analyses. Phylogenetic reconstruction revealed seven divergent evolutionary lineages, with mean pairwise (K2P) sequence distances from 7.8% to 21.1%, except for a closer ND2 distance (3.4%). The complex geological history of southern China drove matrilineal divergence in the O. schmackeri species complex into highly structured geographical units. The first divergence between lineage A+B and other lineages (C-G) had likely been influenced by the uplift of coastal mountains of Southeast China during the Mio-Pliocene period. The subsequent divergences between the lineages C-G may have followed the formation of the Three Gorges and the intensification of the East Asian summer monsoon during the late Pliocene and early Pleistocene. Demographic analyses indicated that major lineages A and C have been experienced recent population expansion (c. 0.045–0.245 Ma) from multiple refugia prior to the Last Glacial Maximum (LGM). Molecular analysis suggest that these seven lineages may represent seven different species, three described species and four cryptic species and should at least be separated into seven management units corresponding to these seven geographic lineages for conservation.  相似文献   

8.
North America and Eurasia share several closely related taxa that diverged either from the breakup of the Laurasian supercontinent or later closures of land bridges. Their modern population structures were shaped in Pleistocene glacial refugia and via later expansion patterns, which are continuing. The pikeperch genus Sander contains five species – two in North America (S. canadensis and S. vitreus) and three in Eurasia (S. lucioperca, S. marinus, and S. volgensis) – whose evolutionary relationships and relative genetic diversities were previously unresolved, despite their fishery importance. This is the first analysis to include the enigmatic and rare sea pikeperch S. marinus, nuclear DNA sequences, and multiple mitochondrial DNA regions. Bayesian and maximum‐likelihood trees from three mitochondrial and three nuclear gene regions support the hypothesis that Sander diverged from its sister group Romanichthys/Zingel ~24.6 Mya. North American and Eurasian Sander then differentiated ~20.8 Mya, with the former diverging ~15.4 Mya, congruent with North American fossils dating to ~16.3–13.6 Mya. Modern Eurasian species date to ~13.8 Mya, with S. volgensis being basal and comprising the sister group to S. lucioperca and S. marinus, which diverged ~9.1 Mya. Genetic diversities of the North American species are higher than those in Eurasia, suggesting fewer Pleistocene glaciation bottlenecks. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 156–179.  相似文献   

9.
喜马拉雅旱獭是青藏高原的优势种,数量多、分布广,全面了解其遗传背景对该地区旱獭资源的保护与合理利用具有重要的意义。本研究以青藏高原云南、西藏和青海三省区共13个地理种群计258只旱獭为研究对象,PCR扩增获得线粒体DNA控制区基因部分序列(887 bp),并运用种群遗传学方法进行遗传多样性分析。结果显示:258份样品共发现了84个变异位点(9.40%),定义了68种单倍型,其单倍型多样性(h)平均值为0.968±0.003、核苷酸多样性(π)平均值为0.017 25±0.016 37,种群总体遗传多样性较高。AMOVA方差分析显示13个地理种群间存在着明显的遗传分化(Fst=0.620 67,P<0.001),种群间基因交流多数较低(Nm<1)。基于单倍型构建的系统发育树中13个地理种群的喜马拉雅旱獭聚为两支,其中来自青藏高原西南地区(西藏安多、青海格尔木、青海囊谦、云南迪庆)的18个单倍型聚成一个大的分支(A支),其余50个单倍型聚为一个大的分支(B支),在NETWORK网络图中也可见到相似网络拓扑结构。研究结果显示青藏高原喜马拉雅旱獭种群以唐古拉山脉为界分为两个大的种群,说明地理隔离是影响喜马拉雅旱獭种群动态变化的主要因素。  相似文献   

10.
In this study we analyzed the genetic population structure of the hygrophilous tall-herb Cicerbita alpina in the western Alps because this group of mountain plants is underrepresented in the biogeographical literature. AFLP (amplified fragment length polymorphism) fingerprints of 40 samples were analyzed from four populations situated in a transect from the southwestern Alps to the eastern part of the western Alps and one population from the Black Forest outside the Alps. Two genetic groups can be distinguished. The first group (A) comprises the populations from the northern and eastern parts of the western Alps, and the second group (B) comprises the populations from the southwestern Alps and the Black Forest. Group A originates most likely from at least one refugium in the southern piedmont regions of the Alps. This result provides molecular evidence for a humid climate at the southern margin of the Alps during the Würm glaciation. Group B originates presumably from western or northern direction and we discuss two possible scenarios for the colonization of the Alps, i.e. (1) long-distance dispersal from southwestern refugia and (2) colonization from nearby refugia in the western and/or northern Alpine forelands. The study demonstrates that the target species harbours considerable genetic diversity, even on a regional scale, and therefore is a suitable model for phylogeographic research.  相似文献   

11.
Meng L  Yang R  Abbott RJ  Miehe G  Hu T  Liu J 《Molecular ecology》2007,16(19):4128-4137
The disjunct distribution of forests in the Qinghai-Tibetan Plateau (QTP) and adjacent Helan Shan and Daqing Shan highlands provides an excellent model to examine vegetation shifts, glacial refugia and gene flow of key species in this complex landscape region in response to past climatic oscillations and human disturbance. In this study, we examined maternally inherited mitochondrial DNA (nad1 intron b/c and nad5 intron 1) and paternally inherited chloroplast DNA (trnC-trnD) sequence variation within a dominant forest species, Picea crassifolia Kom. We recovered nine mitotypes and two chlorotypes in a survey of 442 individuals from 32 populations sampled throughout the species' range. Significant mitochondrial DNA population subdivision was detected (G(ST) = 0.512; N(ST) = 0.679), suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (N(ST) > GST, P < 0.05). Plateau haplotypes differed in sequence from those in the adjacent highlands, suggesting a long period of allopatric fragmentation between the species in the two regions and the presence of independent refugia in each region during Quaternary glaciations. On the QTP platform, all but one of the disjunct populations surveyed were fixed for the same mitotype, while most populations at the plateau edge contained more than one haplotype with the mitotype that was fixed in plateau platform populations always present at high frequency. This distribution pattern suggests that present-day disjunct populations on the QTP platform experienced a common recolonization history. The same phylogeographical pattern, however, was not detected for paternally inherited chloroplast DNA haplotypes. Two chlorotypes were distributed throughout the range of the species with little geographical population differentiation (G(ST) = N(ST) = 0.093). This provides evidence for highly efficient pollen-mediated gene flow among isolated forest patches, both within and between the QTP and adjacent highland populations. A lack of isolation to pollen-mediated gene flow between forests on the QTP and adjacent highlands is surprising given that the Tengger Desert has been a geographical barrier between these two regions for approximately the last 1.8 million years.  相似文献   

12.
Pleistocene glaciations greatly affected the distribution of genetic diversity in animal populations. The Little Owl is widely distributed in temperate regions and could have survived the last glaciations in southern refugia. To describe the phylogeographical structure of European populations, we sequenced the mitochondrial cytochrome c oxidase I (COI) and control region (CR1) in 326 individuals sampled from 22 locations. Phylogenetic analyses of COI identified two deeply divergent clades: a western haplogroup distributed in western and northwestern Europe, and an eastern haplogroup distributed in southeastern Europe. Faster evolving CR1 sequences supported the divergence between these two main clades, and identified three subgroups within the eastern clade: Balkan, southern Italian and Sardinian. Divergence times estimated from COI with fossil calibrations indicate that the western and eastern haplogroups split 2.01–1.71 Mya. Slightly different times for splits were found using the standard 2% rate and 7.3% mtDNA neutral substitution rate. CR1 sequences dated the origin of endemic Sardinian haplotypes at 1.04–0.26 Mya and the split between southern Italian and Balkan haplogroups at 0.72–0.21 Mya, coincident with the onset of two Pleistocene glaciations. Admixture of mtDNA haplotypes was detected in northern Italy and in central Europe. These findings support a model of southern Mediterranean and Balkan refugia, with postglacial expansion and secondary contacts for Little Owl populations. Central and northern Europe was predominantly recolonized by Little Owls from Iberia, whereas expansion out of the Balkans was more limited. Northward expansion of the Italian haplogroup was probably prevented by the Alps, and the Sardinian haplotypes remained confined to the island. Results showed a clear genetic pattern differentiating putative subspecies. Genetic distances between haplogroups were comparable with those recorded between different avian species.  相似文献   

13.
To reveal differences in phylogeographic patterns of flightless insect species occurring in different regions of Japan, we studied the phylogeography and demographic history of Silpha beetles occurring in cool-temperate habitats of two major islands, Honshu and Hokkaido, using sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene. Honshu has a more mountainous topography, and cool-temperate habitats occur discontinuously, whereas Hokkaido, located to the north of Honshu, has more continuous cool-temperate habitats. A species endemic to Honshu, S. longicornis occurs on Honshu, whereas S. perforata occurs on Hokkaido and the East Asian continent. Our results indicate that the ancestors of S. longicornis colonized Honshu via a south-west route c . 0.7 Mya and the species has highly divergent populations in isolated mountainous areas of Honshu, whereas S. perforata colonized Hokkaido via a northern route less than 90 000 years ago and has less divergent geographic populations. During the last glacial period, S. perforata was probably restricted to refugia in southern Hokkaido and later expanded into northern Hokkaido, whereas S. longicornis populations existed in many isolated refugia, probably because of the complex topography of Honshu. Thus, our study demonstrates that, even between closely related species, interactions among biology, latitudinal climatic gradients and topography can produce different phylogeographic patterns.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 452–467.  相似文献   

14.
Phylogeographic studies of Eremias lizards (Lacertidae) in East Asia have been limited, and the impact of major climatic events on their population dynamics remains poorly known. This study aimed to investigate population histories and refugia during the Last Glacial Maximum of two sympatric Eremias lizards (E. argus and E. brenchleyi) inhabiting northern China. We sequenced partial mitochondrial DNA from the ND4 gene for 128 individuals of E. argus from nine localities, and 46 individuals of E. brenchleyi from five localities. Forty-four ND4 haplotypes were determined from E. argus samples, and 33 from E. brenchleyi samples. Population expansion events began about 0.0044 Ma in E. argus, and 0.031 Ma in E. brenchleyi. The demographic history of E. brenchleyi indicates a long-lasting population decline since the most recent common ancestor, while that of E. argus indicates a continuous population growth. Among-population structure was significant in both species, and there were multiple refugia across their range. Intermittent gene flow occurred among expanded populations across multiple refugia during warmer phases of the glacial period, and this may explain why the effective population size has remained relatively stable in E. brenchleyi and grown in E. argus.  相似文献   

15.
Schizopygopsis stoliczkai (Cyprinidae, subfamily Schizothoracinae) is one of the major freshwater fishes endemic to the northwestern margin of the Tibetan Plateau. In the current study, we used mitochondrial DNA markers cytochrome b (Cyt b) and 16S rRNA (16S), as well as the nuclear marker, the second intron of the nuclear beta‐actin gene (Act2), to uncover the phylogeography of S. stoliczkai. In total, we obtained 74 haplotypes from 403 mitochondrial concatenated sequences. The mtDNA markers depict the phylogenetic structures of S. stoliczkai, which consist of clade North and clade South. The split time of the two clades is dated back to 4.27 Mya (95% HPD = 1.96–8.20 Mya). The estimated split time is earlier than the beginning of the ice age of Pleistocene (2.60 Mya), suggesting that the northwestern area of the Tibetan Plateau probably contain at least two glacial refugia for S. stoliczkai. SAMOVA supports the formation of four groups: (i) the Karakash River group; (ii) The Lake Pangong group; (iii) the Shiquan River group; (iv) the Southern Basin group. Clade North included Karakash River, Lake Pangong, and Shiquan River groups, while seven populations of clade South share the haplotypes. Genetic diversity, star‐like network, BSP analysis, as well as negative neutrality tests indicate recent expansions events of S. stoliczkai. Conclusively, our results illustrate the phylogeography of S. stoliczkai, implying the Shiquan River is presumably the main refuge for S. stoliczkai.  相似文献   

16.
The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia.  相似文献   

17.
The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman, Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades of S. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia.  相似文献   

18.
《Genomics》2020,112(5):3511-3517
The Acipenseriformes, as one of the earliest extant vertebrates, plays an important role in the evolution of fishes and even the whole vertebrates. Here we collected and analyzed all complete mitochondrial genomes of Acipenseriformes species. Phylogenetic analyses demonstrated that the polytomous branch included Acipenseridae and Polyodontidae formed five clades. The Polyodontidae clade and the Scaphirhynchus clade both were monophyletic group, whereas the Acipenser species and the Huso species both were polyphyletic group. The Bayesian divergence times showed that the origin time for Acipenseriformes was at 318.0 Mya, which was similar to the some previous results of 312.1 Mya, 346.9 Mya and 389.7 Mya. The result was in good consistent with the paleontological data available and the split time of the Pacific and Atlantic Oceans from the Jurassic to the Cretaceous (Laurasia splits in North America and Eurasia). The dN/dS ratios showed the evolutionary rates gradually slow down in five major Acipenseriformes clades from the Clade A (the Pacific sturgeons species) to Clade C (the genus Scaphirhynchus), which was related to the process of geographical formation.  相似文献   

19.
Southwestern Australia has been recognized as a biodiversity hot spot of global significance, and it is particularly well known for its considerable diversity of flowering plant species. Questions of interest are how this region became so diverse and whether its fauna show similar diverse patterns of speciation. Here, we carried out a phylogeographic study of trapdoor spiders (Migidae: Moggridgea), a presumed Gondwanan lineage found in wet forest localities across southwestern Australia. Phylogenetic, molecular clock and population genetic analyses of mitochondrial (mtDNA) COI gene and ITS rRNA (internal transcribed spacer) data revealed considerable phylogeographic structuring of Moggridgea populations, with evidence for long-term (>3 million years) isolation of at least nine populations in different geographic locations, including upland regions of the Stirling and Porongurup Ranges. High levels of mtDNA divergence and no evidence of recent mitochondrial gene flow among valley populations of the Stirling Range suggest that individual valleys have acted as refugia for the spiders throughout the Pleistocene. Our findings support the hypothesis that climate change, particularly the aridification of Australia after the late Miocene, and the topography of the landscape, which allowed persistence of moist habitats, have been major drivers of speciation in southwestern Australia.  相似文献   

20.
Mitochondrial DNA barcodes provide a simple taxonomic tool for systematic and ecological research, with particular benefit for poorly studied or species-rich taxa. Barcoding assumes genetic diversity follows species boundaries; however, many processes disrupt species-level monophyly of barcodes leading to incorrect classifications. Spatial population structure, particularly when shared across closely related and potentially hybridizing taxa, can invalidate barcoding approaches yet few data exist to examine its impacts. We test how shared population structure across hybridizing species impacts upon mitochondrial barcodes by sequencing the cytochrome b gene for 518 individuals of four well-delimited Western Palaearctic gallwasp species within the Andricus quercuscalicis species group. Mitochondrial barcodes clustered individuals into mixed-species clades corresponding to refugia, with no difference in within- and between-species divergence. Four nuclear genes were also sequenced from 4 to 11 individuals per refugial population of each species. Multi-locus analyses of these data supported established species, with no support for the refugial clustering across species seen in mitochondrial barcodes. This pattern is consistent with mitochondrial introgression among populations of species sharing the same glacial refugium, such that mitochondrial barcodes identify a shared history of population structure rather than species. Many taxa show phylogeographic structure across glacial refugia, suggesting that mitochondrial barcoding may fail when applied to other sets of co-distributed, closely related species. Robust barcoding approaches must sample extensively across population structure to disentangle spatial from species-level variation. Methods incorporating multiple unlinked loci are also essential to accommodate coalescent variation among genes and provide power to resolve recently diverged species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号