首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Invariant natural killer T cells (iNKT cells) are a unique subset of T lymphocytes and are considered to play an important role in the development of allergic bronchial asthma. Recently, iNKT cells were shown to play an immunoregulatory role in CD4+ and CD8+ T cell-mediated adaptive immune response. Allergen-specific Th2 inflammatory responses are an important part of the adaptive immune response in asthma. However, the regulatory functions of the Th2 inflammatory response in asthma have not been studied in detail.

Method

In this study, we have investigated the regulatory functions of iNKT cells on the Th2 inflammatory response in an ovalbumin (OVA)-induced murine model of asthma.

Results

Our results demonstrate that α-Galactosylceramide (α-GalCer) administration activated iNKT cells but could not induce the Th2 inflammatory response in wild-type (WT) mice. In the OVA-induced asthma model, α-GalCer administration and adoptive transfer of iNKT cells significantly augmented the Th2 inflammatory responses, including elevated inflammatory cell infiltration in the lung and bronchoalveolar lavage fluid (BALF); increased levels of IL-4, IL-5, and IL-13 in the BALF and splenocyte culture supernatant; and increased serum levels of OVA-specific IgE and IgG1. In addition, the Th2 inflammatory response was reduced, but not completely abrogated in CD1d-/- mice immunized and challenged with OVA, compared with WT mice.

Conclusion

These results suggest that iNKT cells may serve as an adjuvant to enhance Th2 inflammatory response in an OVA-induced murine model of asthma.  相似文献   

2.
B cells require MHC class II (MHC II)-restricted cognate help and CD40 engagement by CD4(+) T follicular helper (T(FH)) cells to form germinal centers and long-lasting Ab responses. Invariant NKT (iNKT) cells are innate-like lymphocytes that jumpstart the adaptive immune response when activated by the CD1d-restricted lipid α-galactosylceramide (αGalCer). We previously observed that immunization of mice lacking CD4(+) T cells (MHC II(-/-)) elicits specific IgG responses only when protein Ags are mixed with αGalCer. In this study, we investigated the mechanisms underpinning this observation. We find that induction of Ag-specific Ab responses in MHC II(-/-) mice upon immunization with protein Ags mixed with αGalCer requires CD1d expression and CD40 engagement on B cells, suggesting that iNKT cells provide CD1d-restricted cognate help for B cells. Remarkably, splenic iNKT cells from immunized MHC II(-/-) mice display a typical CXCR5(hi)programmed death-1(hi)ICOS(hi)Bcl-6(hi) T(FH) phenotype and induce germinal centers. The specific IgG response induced in MHC II(-/-) mice has shorter duration than that developing in CD4-competent animals, suggesting that iNKT(FH) cells preferentially induce transient rather than long-lived Ab responses. Together, these results suggest that iNKT cells can be co-opted into the follicular helper function, yet iNKT(FH) and CD4(+) T(FH) cells display distinct helper features, consistent with the notion that these two cell subsets play nonredundant functions throughout immune responses.  相似文献   

3.
Vitamin D receptor (VDR) deficiency (knockout [KO]) results in a failure of mice to generate an airway hyperreactivity (AHR) response on both the BALB/c and C57BL/6 background. The cause of the failed AHR response is the defective population of invariant NKT (iNKT) cells in the VDR KO mice because wild-type (WT) iNKT cells rescued the AHR response. VDR KO mice had significantly fewer iNKT cells and normal numbers of T cells in the spleen compared with WT mice. In BALB/c VDR KO mice, the reduced frequencies of iNKT cells were not apparent in the liver or thymus. VDR KO and WT Th2 cells produced similar levels of IFN-γ and IL-5. On the BALB/c background, Th2 cells from VDR KO mice produced less IL-13, whereas on the C57BL/6 background, Th2 cells from VDR KO mice produced less IL-4. Conversely, VDR KO iNKT cells were defective for the production of multiple cytokines (BALB/c: IL-4, IL-5, and IL-13; C57BL/6: IL-4 and IL-17). Despite relatively normal Th2 responses, BALB/c and C57BL/6 VDR KO mice failed to develop AHR responses. The defect in iNKT cells as a result of the VDR KO was more important than the highly susceptible Th2 background of the BALB/c mice. Defective iNKT cell responses in the absence of the VDR result in the failure to generate AHR responses in the lung. The implication of these mechanistic findings for human asthma requires further investigation.  相似文献   

4.
Mouse CD1d-restricted NKT cells, including invariant (i)NKT cells, are innate cells activated by glycolipid Ags and play important roles in the initiation and regulation of immune responses. Through their ability to promptly produce large amounts of Th1 and/or Th2 cytokines upon TCR engagement, iNKT cells exert crucial functions in the immune/inflammatory system during bacterial, protozoan, fungal, and viral infections. However, their roles during metazoan parasite infection, which are generally associated with strong Th2 responses, still remain elusive. In this study, we show that during the course of murine schistosomiasis, iNKT cells exhibit an activated phenotype and that following schistosome egg encounter in the liver, hepatic iNKT cells produce both IFN-gamma and IL-4 in vivo. We also report that schistosome egg-sensitized dendritic cells (DCs) activate, in a CD1d-dependent manner, iNKT cells to secrete IFN-gamma and IL-4 in vitro. Interestingly, transfer of egg-sensitized DCs promotes a strong Th2 response in recipient wild-type mice, but not in mice that lack iNKT cells. Engagement of TLRs in DCs is not necessary for iNKT cell stimulation in response to egg-sensitized DCs, suggesting an alternative pathway of activation. Finally, we propose that self, rather than parasite-derived, CD1d-restricted ligands are implicated in iNKT cell stimulation. Taken together, our data show for the first time that helminths can activate iNKT cells to produce immunoregulatory cytokines in vivo, enabling them to influence the adaptive immune response.  相似文献   

5.
Induction of oral tolerance has long been considered a promising approach to the treatment of chronic autoimmune diseases, including rheumatoid arthritis (RA). Oral administration of type II collagen (CII) has been proven to improve signs and symptoms in RA patients without troublesome toxicity. To investigate the mechanism of immune suppression mediated by orally administered antigen, we examined changes in serum IgG subtypes and T-cell proliferative responses to CII, and generation of IL-10-producing CD4+CD25+ T-cell subsets in an animal model of collagen-induced arthritis (CIA). We found that joint inflammation in CIA mice peaked at 5 weeks after primary immunization with CII, which was significantly less in mice tolerized by repeated oral feeding of CII before CIA induction. Mice that had been fed with CII also exhibited increased serum IgG1 and decreased serum IgG2a as compared with nontolerized CIA animals. The T-cell proliferative response to CII was suppressed in lymph nodes of tolerized mice also. Production of IL-10 and of transforming growth factor-beta from mononuclear lymphocytes was increased in the tolerized animals, and CD4+ T cells isolated from tolerized mice did not respond with induction of IFN-gamma when stimulated in vitro with CII. We also observed greater induction of IL-10-producing CD4+CD25+ subsets among CII-stimulated splenic T cells from tolerized mice. These data suggest that when these IL-10-producing CD4+CD25+ T cells encounter CII antigen in affected joints they become activated to exert an anti-inflammatory effect.  相似文献   

6.
7.
Low vitamin D status is associated with an increased risk of immune-mediated diseases like inflammatory bowel disease (IBD) in humans. Experimentally vitamin D status is a factor that shapes the immune response. Animals that are either vitamin D deficient or vitamin D receptor (VDR) deficient are prone to develop IBD. Conventional T cells develop normally in VDR knockout (KO) mice but over-produce IFN-γ and IL-17. Naturally occurring FoxP3+ regulatory T cells are present in normal numbers in VDR KO mice and function as well as wildtype T regs. Vitamin D and the VDR are required for the development and function of two regulatory populations of T cells that require non-classical MHC class 1 for development. The two vitamin D dependent cell types are the iNKT cells and CD4/CD8αα intraepithelial lymphocytes (IEL). Protective immune responses that depend on iNKT cells or CD8αα IEL are therefore impaired in the vitamin D or VDR deficient host and the mice are more susceptible to immune-mediated diseases in the gut.  相似文献   

8.
In a model of peripheral tolerance called anterior chamber-associated immune deviation (ACAID), the differentiation of the T regulatory cells depends on NKT cells and occurs in the spleen. In this study, we show that NKT cells that express the invariant (i) TCR and are the CD1d-reactive NKT cells (required for development of peripheral tolerance) actually produced urokinase-type plasminogen activator (uPA) during tolerance induction. The RT-PCR and in vitro plasmin assay showed that splenic iNKT cells derived uPA-converted plasminogen to plasmin. Moreover, uPA was required for tolerance induction because uPA knockout (KO) mice did not develop peripheral tolerance or develop CD8(+) T regulatory cells after Ag inoculation into the anterior chamber. In contrast, other aspects of ACAID-induced tolerance, including recruitment of iNKT cells to the spleen and production of IL-10 by iNKT cells, were unchanged in uPA-deficient mice. The adoptive transfer of splenic NKT cells from wild-type mice restored ACAID in Jalpha18 KO mice (iNKT cell deficient), but NKT cells from uPA KO mice did not. We postulate that the mechanism of action of uPA is through its binding to the uPAR receptor, and enzymatic cleavage of plasminogen to plasmin, which in turn activates latent TGFbeta. In conclusion, uPA derived from iNKT cells is required to induce peripheral tolerance via the eye.  相似文献   

9.
IL-1 has been shown to have strong mucosal adjuvant activities, but little is known about its mechanism of action. We vaccinated IL-1R1 bone marrow (BM) chimeric mice to determine whether IL-1R1 expression on stromal cells or hematopoietic cells was sufficient for the maximal adjuvant activity of nasally delivered IL-1α as determined by the acute induction of cytokine responses and induction of Bacillus anthracis lethal factor (LF)-specific adaptive immunity. Cytokine and chemokine responses induced by vaccination with IL-1α were predominantly derived from the stromal cell compartment and included G-CSF, IL-6, IL-13, MCP-1, and keratinocyte chemoattractant. Nasal vaccination of Il1r1(-/-) (knock-out [KO]) mice given wild-type (WT) BM (WT→KO) and WT→WT mice with LF + IL-1α induced maximal adaptive immune responses, whereas vaccination of WT mice given Il1r1(-/-) BM (KO→WT) resulted in significantly decreased production of LF-specific serum IgG, IgG subclasses, lethal toxin-neutralizing Abs, and mucosal IgA compared with WT→KO and WT→WT mice (p < 0.05). IL-1α adjuvant activity was not dependent on mast cells. However, the ability of IL-1α to induce serum LF-specific IgG2c and lethal toxin-neutralizing Abs was significantly impaired in CD11c-Myd88(-/-) mice when compared with WT mice (p < 0.05). Our results suggest that CD11c(+) cells must be directly activated by nasally administered IL-1α for maximal adjuvant activity and that, although stromal cells are required for maximal adjuvant-induced cytokine production, the adjuvant-induced stromal cell cytokine responses are not required for effective induction of adaptive immunity.  相似文献   

10.
Although invariant NKT (iNKT) cells play a regulatory role in the pathogenesis of autoimmune diseases and allergy, an initial trigger for their regulatory responses remains elusive. In this study, we report that a proportion of human CD4+ iNKT cell clones produce enormous amounts of IL-5 and IL-13 when cocultured with CD1d+ APC in the presence of IL-2. Such IL-5 bias was never observed when we stimulated the same clones with alpha-galactosylceramide or anti-CD3 Ab. Suboptimal TCR stimulation by plate-bound anti-CD3 Ab was found to mimic the effect of CD1d+ APC, indicating the role of TCR signaling for selective induction of IL-5. Interestingly, DNA microarray analysis identified IL-5 and IL-13 as the most highly up-regulated genes, whereas other cytokines produced by iNKT cells, such as IL-4 and IL-10, were not significantly induced. Moreover, iNKT cells from BALB/c mice showed similar IL-5 responses after stimulation with IL-2 ex vivo or in vivo. The iNKT cell subset producing IL-5 and IL-13 could play a major role in the development of allergic disease or asthma and also in the immune regulation of Th1 inflammation.  相似文献   

11.
C57BL/6 mice are known to be resistant to the development of collagen-induced arthritis (CIA). However, they show a severe arthritic phenotype when the Ifng gene is deleted. Although it has been proposed that IFN-γ suppresses inflammation in CIA via suppressing Th17 which is involved in the pathogenesis of CIA, the exact molecular mechanism of the Th17 regulation by IFN-γ is poorly understood. This study was conducted to 1) clarify that arthritogenic condition of IFN-γ knockout (KO) mice is dependent on the disinhibition of Th17 and 2) demonstrate that IFN-γ-induced indoleamine2,3dioxgenase (IDO) is engaged in the regulation of Th17. The results showed that the IFN-γ KO mice displayed increased levels of IL-17 producing T cells and the exacerbation of arthritis. Also, production of IL-17 by the splenocytes of the IFN-γ KO mice was increased when cultured with type II collagen. When Il17 was deleted from the IFN-γ KO mice, only mild arthritis developed without any progression of the arthritis score. The proportion of CD44highCD62Llow memory-like T cells were elevated in the spleen, draining lymph node and mesenteric lymph node of IFN-γ KO CIA mice. Meanwhile, CD44lowCD62Lhigh naïve T cells were increased in IFN-γ and IL-17 double KO CIA mice. When Th17 polarized CD4+ T cells of IFN-γ KO mice were co-cultured with their own antigen presenting cells (APCs), a greater increase in IL-17 production was observed than in co-culture of the cells from wild type mice. In contrast, when APCs from IFN-γ KO mice were pretreated with IFN-γ, there was a significant reduction in IL-17 in the co-culture system. Of note, pretreatment of 1-methyl-DL- tryptophan, a specific inhibitor of IDO, abolished the inhibitory effects of IFN-γ. Given that IFN-γ is a potent inducer of IDO in APCs, these results suggest that IDO is involved in the regulation of IL-17 by IFN-γ.  相似文献   

12.
13.
Bao L  Zhu Y  Zhu J  Lindgren JU 《Cytokine》2005,31(1):64-71
Collagen-induced arthritis (CIA) is a widely used model of human rheumatoid arthritis (RA) characterized by chronic inflammation of the synovial joints. The pathogenesis of RA and CIA has not been completely defined, but both involve the recruitment of leukocytes and lymphocytes to the joints and Th1-type cell mediated autoimmune responses. The C-C chemokine receptor 5 (CCR5) is preferentially expressed on Th1 cells and has been strongly implicated in inflammatory process through trafficking of leukocytes and lymphocytes into the sites of inflammation. We investigated the role of the CCR5 in CIA using CCR5 knockout mice (CCR5-/-) in which we analyzed the consequences of CCR5 deficiency for the immune response and inflammation. We found that CCR5-/- mice showed a significant reduction in the incidence of CIA after collagen II (CII)-immunization as compared to wild-type (CCR5+/+) mice. The reduced incidence seen in CCR5-/- mice was associated with these animals having significantly lower IgG levels, especially IgG2a and IgG2b antibodies against CII, as well as an obviously augmented IL-10 production in splenocytes. Overproduction of MIP-1beta in CCR5-deficient mice after CII-immunization may contribute partially to the occurrence of arthritis.  相似文献   

14.
Chronic inflammatory autoimmune diseases such as diabetes, experimental autoimmune encephalomyelitis, and collagen-induced arthritis (CIA) are associated with type 1 (Th1, Tc1) T cell-dependent responses against autoantigens. Immune deviation toward type 2 (Th2, Tc2) response has been proposed as a potential means of gene therapy or immunomodulation to treat autoimmune diseases based on evidence that type 2 cytokines can prevent or alleviate these conditions. In this report we assessed the effects of elevated type 2 responses on CIA using transgenic mice expressing an IL-2R beta/IL-4R alpha chimeric cytokine receptor transgene specifically in T cells. In response to IL-2 binding, this chimeric receptor transduces IL-4-specific signals and dramatically enhances type 2 responses. In contrast to published reports of Th2-mediated protection, CIA was exacerbated in IL-2R beta/IL-4R alpha chimeric receptor transgenic mice, with increased disease incidence, severity, and earlier disease onset. The aggravated disease in transgenic mice was associated with an increase in type 2 cytokines (IL-4, IL-5, IL-10) and an increase in collagen-specific IgG1 levels. However, IFN-gamma production is not affected significantly in the induction phase of the disease. There is also an extensive eosinophilic infiltration in the arthritic joints of the transgenic animal, suggesting a direct contribution of type 2 response to joint inflammation. Taken together, our findings provide novel evidence that enhancement of a polyclonal type 2 response in immunocompetent hosts may exacerbate an autoimmune disease such as CIA, rather than serving a protective role. This finding raises significant caution with regard to the potential use of therapeutic approaches based on immune deviation toward type 2 responses.  相似文献   

15.
The ability of CD8 T cells to suppress IgE responses is well established. Previously, we demonstrated that CD8 T cells inhibit IgE responses via the induction of IL-12, which promotes Th1 and suppresses Th2 responses. In this study, we show that IL-18 also plays an essential role in IgE suppression. In vitro, IL-18 synergized with IL-12 to promote Th1/T cytotoxic 1 and inhibit Th2/T cytotoxic 2 differentiation. OVA-specific TCR transgenic (OT-I) CD8 cells induced both IL-12 and IL-18 when cultured with OVA(257-264) peptide-pulsed dendritic cells. In vivo, IL-18(-/-) mice exhibited higher IgE and IgG1 levels compared with wild-type mice after immunization with OVA/alum. Furthermore, adoptive transfer of CD8 T cells from OVA-primed mice suppressed IgE responses in OVA/alum-immunized mice, but not in IL-18(-/-) mice. IgE suppression in IL-18(-/-) mice was restored if CD8 T cells were coadoptively transferred with IL-18-competent wild-type bone marrow dendritic cell progenitors, demonstrating an essential role of IL-18 in CD8 T cell-mediated suppression of IgE responses. The data suggest that CD8 T cells induce IL-18 production during a cognate interaction with APCs that synergizes with IL-12 to promote immune deviation away from the allergic phenotype. Our data identify IL-18 induction as a potentially useful target in immunotherapy of allergic disease.  相似文献   

16.
In this study, we investigated the role of endogenous IL-12 in protective immunity against blood-stage P. chabaudi AS malaria using IL-12 p40 gene knockout (KO) and wild-type (WT) C57BL/6 mice. Following infection, KO mice developed significantly higher levels of primary parasitemia than WT mice and were unable to rapidly resolve primary infection and control challenge infection. Infected KO mice had severely impaired IFN-gamma production in vivo and in vitro by NK cells and splenocytes compared with WT mice. Production of TNF-alpha and IL-4 was not compromised in infected KO mice. KO mice produced significantly lower levels of Th1-dependent IgG2a and IgG3 but a higher level of Th2-dependent IgG1 than WT mice during primary and challenge infections. Treatment of KO mice with murine rIL-12 during the early stage of primary infection corrected the altered IgG2a, IgG3, and IgG1 responses and restored the ability to rapidly resolve primary and control challenge infections. Transfer of immune serum from WT mice to P. chabaudi AS-infected susceptible A/J mice completely protected the recipients, whereas immune serum from KO mice did not, as evidenced by high levels of parasitemia and 100% mortality in recipient mice. Furthermore, depletion of IgG2a from WT immune serum significantly reduced the protective effect of the serum while IgG1 depletion had no significant effect. Taken together, these results demonstrate the protective role of a Th1-immune response during both acute and chronic phases of blood-stage malaria and extend the immunoregulatory role of IL-12 to Ab-mediated immunity against Plasmodium parasites.  相似文献   

17.
Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and development of new therapeutics for Th2-mediated immune diseases such as AD.  相似文献   

18.
Following inoculation of Ag into the anterior chamber (a.c.), systemic tolerance develops that is mediated in part by Ag-specific efferent CD8(+) T regulatory (Tr) cells. This model of tolerance is called a.c.-associated immune deviation. The generation of the efferent CD8(+) Tr cell in a.c.-associated immune deviation is dependent on IL-10-producing, CD1d-restricted, invariant Valpha14(+) NKT (iNKT) cells. The iNKT cell subpopulations are either CD4(+) or CD4(-)CD8(-) double negative. This report identifies the subpopulation of iNKT cells that is important for induction of the efferent Tr cell. Because MHC class II(-/-) (class II(-/-)) mice generate efferent Tr cells following a.c. inoculation, we conclude that conventional CD4(+) T cells are not needed for the development of efferent CD8(+) T cells. Furthermore, Ab depletion of CD4(+) cells in both wild-type mice (remove both conventional and CD4(+) NKT cells) and class II(-/-) mice (remove CD4(+) NKT cells) abrogated the generation of Tr cells. We conclude that CD4(+) NKT cells, but not the class II molecule or conventional CD4(+) T cells, are required for generation of efferent CD8(+) Tr cells following Ag introduction into the eye. Understanding the mechanisms that lead to the generation of efferent CD8(+) Tr cells may lead to novel immunotherapy for immune inflammatory diseases.  相似文献   

19.
CD1d-restricted NKT cells expressing invariant TCR alpha-chains (iNKT cells) produce both proinflammatory and anti-inflammatory cytokines rapidly upon activation, and are believed to play an important role in both host defense and immunoregulation. To address the potential implications of iNKT cell responses for infectious or inflammatory diseases of the nervous system, we investigated the expression of CD1d in human peripheral nerve. We found that CD1d was expressed on the surface of Schwann cells in situ and on primary or immortalized Schwann cell lines in culture. Schwann cells activated iNKT cells in a CD1d-dependent manner in the presence of alpha-galactosylceramide. Surprisingly, the cytokine production of iNKT cells stimulated by alpha-galactosylceramide presented by CD1d+ Schwann cells showed a predominance of Th2-associated cytokines such as IL-5 and IL-13 with a marked deficiency of proinflammatory Th1 cytokines such as IFN-gamma or TNF-alpha. Our findings suggest a mechanism by which iNKT cells may restrain inflammatory responses in peripheral nerves, and raise the possibility that the expression of CD1d by Schwann cells could be relevant in the pathogenesis of infectious and inflammatory diseases of the peripheral nervous system.  相似文献   

20.
CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4(+), CD8α(+) and CD4(-)CD8α(-) double-negative (DN) subsets. CD4(+) iNKT cells expanded more readily than CD8α(+) and DN iNKT cells upon mitogen stimulation. CD8α(+) and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d(+) cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4(+) and CD8α(+) fractions, respectively. Only CD4(+) iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α(+), DN or CD4(+) iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号