首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thallium acetate (TIOAc) effectively stimulates poly(U)-directed Phe-tRNA binding to mouse ascitic tumour ribosomes under conditions when other ribosomal functions are completely blocked. The TI+ optimum is about 200 mM. The reaction is stimulated by EF-1, but not significantly by GTP. EF-1-dependent ribosomal GTPase is inhibited by T1+. The isolated Phe-tRNA . ribosome complex is relatively stable. The bound Phe-tRNA does not react with puromycin in the presence of 175 mM KCl. The complex formed in the presence of 90-100 mM TlOAc can, after isolation, be directly utilized for polyphenylalanine synthesis. The complex formed at 200 mM TlOAc is less active, apparently because of damage to the 60-S subunits. TlOAc at low concentrations (8 mM) stimulates K+ -containing poly(U)-translating systems, probably by stabilizing the translation complex.  相似文献   

2.
The role of elongation factor (EF)-2 phosphorylation in the regulation of pancreatic beta-cell protein synthesis by glucose was investigated in the INS-1-derived cell line 832/13. Incubation of cells in media containing 1 mm glucose resulted in a progressive increase in EF-2 phosphorylation that was maximal by 1-2 h. Readdition of 10 mm glucose promoted a rapid dephosphorylation of EF-2 that was complete in 10 min and maintained over the ensuing 2 h. Similar results were obtained using primary rat islets or Min-6 insulinoma cells. The glucose effect in 832/13 cells was replicated by addition of pyruvate or alpha-ketocaproate, but not 2-deoxyglucose, suggesting that mitochondrial metabolism was required. Accordingly, glucose-mediated dephosphorylation of EF-2 was completely blocked by the mitochondrial respiratory antagonists antimycin A and oligomycin. The hyperglycemic effect was not mimicked by incubation of cells in 100 nm insulin, 30 mm potassium chloride, or 0.25 mm diazoxide, indicating that insulin secretion and/or depolarization of beta cells was not required. The locus of the high glucose effect appeared to be protein phosphatase-2A, the principal phosphatase acting on EF-2. Protein phosphatase-2A activity was stimulated by glucose addition to 832/13 cells, but neither protein phosphatase-1 nor calmodulin kinase III (EF-2 kinase) activity was affected under these conditions. The slower rephosphorylation of EF-2 during the transition from high to low glucose may involve effects on EF-2 kinase activity. Addition of 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside in high glucose led to a marked stimulation of EF-2 phosphorylation, consistent with the possibility that increased AMP kinase activity in low glucose stimulates EF-2 kinase. In parallel with the effects on EF-2 dephosphorylation, addition of high glucose to 832/13 cells markedly increased the incorporation of [(35)S]methionine into total protein. Taken together, these results suggest that modulation of extracellular glucose impacts protein translation rate in beta cells at least in part through regulation of the elongation step, via phosphorylation/dephosphorylation of EF-2.  相似文献   

3.
A cell-free system devoid of polysomes, which translates natural mRNA, has been prepared from rat liver. It contains ribosomal subunits, ribosomes, aminoacyl-tRNA synthetases, tRNAs, and protein factors necessary for translation. Protein synthesis required an energy-generating system, mRNA, and 3 mM Mg2+ concentration, and it was inhibited by 7-methylguanylic acid. The total extent and the rate of protein synthesis were approximately 30% greater when the translating system was prepared from livers of 3-month-old rats, as compared to 30-month-old rats. A ribosome-free fraction containing the protein factors required for translation was also prepared from 3-month-old and 30-month-old rat livers and brains, by extraction with 0.5 M KCl. The high-salt extracts were analyzed for elongation factors EF-1 and EF-2 in a poly(U) translating system. Although the activity of EF-2 was similar in preparations from young and old rats, the EF-1 activity in the 3-month-old rat livers and brains was 30 to 40% greater than in 30-month-old animals. The protein synthesizing activity of high salt-washed ribosomes stripped of endogenous peptidyl-tRNA and mRNA, from livers and brains of young and old animals, was the same.  相似文献   

4.
The major substrate for Ca2+/calmodulin-dependent protein kinase III in mammalian cells is a species of Mr 100,000 that has a primarily cytoplasmic localization. This substrate has now been identified as elongation factor-2 (EF-2), a protein that catalyzes the translocation of peptidyl-tRNA on the ribosome. The amino acid sequence of 18 residues from the N-terminal of the Mr 100,000 CaM-dependent protein kinase III substrate purified from rat pancreas was found to be identical to the N-terminal sequence of authentic rat EF-2 as previously deduced from nucleic acid sequencing of a cDNA (Kohno, K., Uchida, T., Ohkubo, H., Nakanishi, S., Nakanishi, T., Fukui, T., Ohtsuka, E., Ikehara, M., and Okada, Y. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 4978-4982). CaM-dependent protein kinase III phosphorylated EF-2 in vitro with a stoichiometry of approximately 1 mol/mol on a threonine residue. Amino acid sequencing of the purified tryptic phosphopeptide revealed that this threonine residue lies within the sequence: Ala-Gly-Glu-Thr-Arg-Phe-Thr-Asp-Thr-Arg (residues 51-60 of EF-2). The Mr 100,000 protein was stoichiometrically ADP-ribosylated in vitro by the addition of diphtheria toxin and NAD. The Mr 100,000 protein was photoaffinity labeled with a GTP analog and the protein had an endogenous GTPase activity that could be stimulated by the addition of salt-washed ribosomes. These properties are all characteristic of EF-2. Dephospho-EF-2 could support poly(U)-directed polyphenylalanine synthesis in a reconstituted elongation system when combined with EF-1. In the same system, phospho-EF-2 was virtually inactive in supporting polypeptide synthesis; this effect could be reversed by dephosphorylation of phospho-EF-2. These results suggest that intracellular Ca2+ inhibits protein synthesis in mammalian cells via CaM-dependent protein kinase III-catalyzed phosphorylation of EF-2.  相似文献   

5.
A reticulocyte translation system was depleted of functional EF-2 by treatment with diphtheria toxin (DT) fragment A and NAD. After dialysis to remove NAD, the system was reconstituted using preparations of EF-2 derived from pyBHK cells. Untreated and reconstituted lysates permitted similar rates of translation. As expected, when DT-treated EF-2 was used to reconstitute the system, no translation occurred. Furthermore EF-2, reacting with the endogenous ADP-ribosyl transferase from pyBHK cells, was also unable to restore protein synthesis in the reconstituted system. These studies suggest that eukaryotic cellular ADP-ribosyl transferases may play a role in regulating protein synthesis.  相似文献   

6.
The eIF-2A fraction of reticulocyte ribosomal salt wash is capable of maximally stimulating the translation of endogenous messenger RNA by hen oviduct polysomes. The factor increases the initiation of protein synthesis 2--3-fold when measured by the factor-dependent synthesis of NH2-terminal peptides. The addition to these polysomes of elongation factor, EF-1, also increases protein synthesis but at a distinctly different rate and Mg2+ concentration optimum than the eIF-2A fraction. Moreover, there is no stimulation of NH2-terminal peptide synthesis with EF-1 alone. In contrast, all the known initiation factors are required for the translation of exogenous globulin mRNA on oviduct polysomes. Reticulocyte polysomes isolated by an identical procedure to that used for oviduct polysomes or by standard methods also require all the initiation factors for the translation of either endogenous mRNA or exogenous ovalbumin mRNA. Addition of 7-methylguanosine 5'-monophosphate does not inhibit the factor-dependent stimulation of oviduct polysomes except at high concentrations (1.0 mM) indicating that the sites with which 7-methylguanosine 5'-monophosphate normally competes are already occupied. These findings suggest that the messenger RNA remains bound to the oviduct polysomes or initiation factors. Hence the addition of exogenous factors which are involved with mRNA recognition and binding to the ribosome are not required. It has been previously shown that eIF-2A is capable of binding in vitro the initiatior tRNA to an existing Ado-Urd-Gua-40 S complex and initiating protein synthesis when such a complex is present. These present studies indicate that such an initiation complex may exist within the oviduct cell on membrane-associated polysomes. Under these circumstances eIF-2A mediates binding of the initiator tRNA and initiates protein synthesis.  相似文献   

7.
Postpolysomal extracts from wild-type (wt A364A) and temperature-sensitive (ts 7'-14) yeast cells were preincubated for short periods of time at the nonpermissive temperature (37-41 degrees C) prior to incubations for protein synthesis at 20 degrees C. Whereas wt A364A extracts were relatively unaffected by preincubation at the elevated temperature, mutant extracts lost their ability to translate exogenous natural mRNA and poly(U). Phe-tRNA synthetase and ribosomes from ts 7'-14 cells were not inactivated by preincubation at 37-41 degrees C, but a cytosolic component required for chain elongation, as measured by poly(U) translation, was extensively inactivated. The three elongation factors (EF-1, EF-2, and EF-3) required for chain elongation in yeast were resolved chromatographically. Only one factor, EF-3, was able to restore the poly(U)-translational activity of mutant extracts inactivated at the elevated temperature. Heat-inactivated yeast cytosols, which did not support protein synthesis with yeast ribosomes, were perfectly able to translate poly(U) with rat liver ribosomes, which require only EF-1 and EF-2. These and other experiments indicated that the genetically altered component in 7'-14 mutant cells is EF-3.  相似文献   

8.
Monoclonal antibody specific for yeast elongation factor 3   总被引:1,自引:0,他引:1  
Hybridomas have been prepared by fusing mouse myeloma (P3 X 63 Ag8) cells with spleen cells of mice immunized with a yeast fraction enriched with respect to non-ribosomal translational components. Cloned hybridoma lines were grown in the form of ascites tumors, and the monoclonal antibodies produced were purified from the ascites fluid by chromatography on DEAE-Affi-Gel Blue. One of the antibodies, from a hybridoma cell line designated as PSH-1, inhibited the translation of natural mRNA and poly(U) and polysomal chain elongation in a cell-free protein-synthesizing system from yeast. Resolution and partial purification of the elongation factors indicated that the monoclonal antibody from PSH-1 did not interact with EF-1 or EF-2 but reacted with and inactivated EF-3, the 125 000 molecular weight additional elongation factor specifically required with yeast ribosomes. The EF-3 purified from the cytosol by immunoaffinity chromatography was comparable to that prepared by ion-exchange chromatography. Evidence was obtained which indicated that EF-3 was essential for the translation of natural mRNA as well as poly(U), was associated with polysomes but not ribosomal subunits, and was required for every cycle in the elongation phase of protein synthesis.  相似文献   

9.
The inhibition of globin synthesis in hemin-deficient rabbit reticulocyte lysates is due to the activation of a hemin-controlled translational inhibitor (HCI) that specifically phosphorylates eIF-2 alpha. High concentrations of cAMP (5-10 mM) and GTP (1-2 mM) stimulated the globin synthesis in hemin-deficient lysates when these compounds were added at the initial stage of incubation. The mechanism of the stimulation by cAMP and GTP was studied using hemin-deficient lysates, the N-ethylmaleimide (NEM)-treated HCI-supplemented lysates and a partially purified initiation factor, eIF-2. As the stimulation of globin synthesis by these compounds must be due to the prevention of the inhibition of globin synthesis, or due to the restoration of globin synthesis, or both, the preventive and restorative effects of these compounds were examined. As for the preventive effect, it was observed that a) the activation of HCI in the postribosomal supernatant of reticulocytes was prevented by GTP, but not by cAMP, and b) cAMP and GTP inhibited the phosphorylation of eIF-2 alpha in hemin-deficient lysates. As for the restorative effect of cAMP and GTP, it was observed that c) these compounds restored the globin synthesis and the binding of [35S]Met-tRNAf to the 40S ribosomal subunits, and promoted the dephosphorylation of eIF-2(alpha P), d) the rates of the restored synthesis of globin were lower than the control, and e) cAMP promoted the release of [3H]GDP from the eIF-2(alpha P) X [3H]GDP complex and the formation of eIF-2(alpha P) X eIF-2B complex. Finding (d) indicates that steps involved in the restorative effect of these compounds may not contribute to the stimulation of the globin synthesis in hemin-deficient lysates. The data on the preventive and restorative effects of cAMP and GTP showed that these compounds affected multiple steps. That is, cAMP inhibited the phosphorylation of eIF-2 alpha and promoted both the release of GDP from eIF-2 and the formation of eIF-2(alpha P) X eIF-2B complex, and GTP prevented both the activation of HCI and the phosphorylation of eIF-2 alpha. Though cAMP and GTP affected multiple steps, it is suggested that cAMP stimulates the globin synthesis by inhibiting the phosphorylation of eIF-2 alpha and that GTP stimulates the globin synthesis chiefly by preventing the activation of HCI in hemin-deficient lysates.  相似文献   

10.
A G Ryazanov  E K Davydova 《FEBS letters》1989,251(1-2):187-190
Previously we have found that elongation factor 2 (EF-2) from mammalian cells can be phosphorylated by a special Ca2+/calmodulin-dependent protein kinase (EF-2 kinase). Phosphorylation results in complete inactivation of EF-2 in the poly(U)-directed cell-free translation system. However, the partial function of EF-2 affected by phosphorylation remained unknown. Here we show that phosphorylated EF-2, unlike non-phosphorylated EF-2, is unable to switch ribosomes carrying poly(U) and Phe-tRNA in the A site to a puromycin-reactive state. Thus, phosphorylation of EF-2 seems to block its ability to promote a shift of the aminoacyl(peptidyl)-tRNA from the A site to the P site, i.e. translocation itself.  相似文献   

11.
The effect of 30S ribosomal protein S1 on poly(U)-directed polyphenylalanine synthesis was studied using a highly purified cell-free system which was devoid of endogenous S1. The system consisted of homogeneous preparations of EF-Tu, EF-Ts, and EF-G, and 70S ribosomes from which protein S1 had been removed by poly(U)-cellulose column chromatography. It was found that protein S1 was indispensable for translation of poly(U) by an S1-depleted system at low concentrations of poly(U). On the other hand, at higher concentrations of poly(U), a considerable amount of polyphenylalanine was synthesized in the absence of added S1. The stimulatory effect of S1 was observed at all Mg2+ concentrations examined but was most pronounced at 10 mM Mg2+. Some physicochemical properties of the protein were also studied. It was demonstrated that the protein has an elongated shape with an axial ratio of approximately 8.5.  相似文献   

12.
Okadaic acid, a tumour promoter which potently inhibits protein phosphatases, inhibited translation in the reticulocyte-lysate cell-free system. Inhibition was dose-dependent, with half-maximal effects occurring at 20-40 nM-okadaic acid. Inhibition of translation by okadaic acid resulted in the accumulation of polyribosomes, indicating that it was due to a decrease in the rate of elongation relative to initiation. Okadaic acid (at concentrations which inhibited translation) caused increased phosphorylation of a number of proteins in the lysate. Prominent among these was a protein of Mr 100,000, which has previously been identified as elongation factor 2 (EF-2). EF-2 is a specific substrate for a Ca2+/calmodulin-dependent protein kinase, which phosphorylates EF-2 on threonine residues. The Mr-100,000 band was phosphorylated exclusively on threonine residues, and its degree of 32P labelling was decreased by the Ca2+ chelator EGTA and by the calmodulin antagonist trifluoperazine. These agents attenuated the effects of okadaic acid on EF-2 phosphorylation and translation. When ranges of concentrations of each agent were tested, their effects on EF-2 labelling correlated well with their ability to reverse the okadaic acid-induced inhibition of translation. These findings demonstrate that increased phosphorylation of EF-2 results in an impairment of peptide-chain elongation when natural mRNA is used. The possible physiological role of EF-2 phosphorylation in the control of translation is discussed.  相似文献   

13.
The induction of alkaline phosphatase (ALP) by dibutyryl adenosine 3':5'-cyclic monophosphate (Bt2cAMP) was investigated in strain JTC-12 . P3 cells derived from monkey (Maccaca irus) kidney cortex. ALP activity was increased by Bt2cAMP in a dose-dependent manner, reaching a plateau at concentrations higher than 5 mM with the activity being about 4 times that of the controls. The concentration of Bt2cAMP required for half-maximal induction of ALP activity was about 0.8 mM. ALP activity was increased rapidly by Bt2cAMP for the first 5 days and then continued to increase gradually towards a plateau level. Removal of Bt2cAMP from the medium caused a rapid decrease in the activity, suggesting that the induction of ALP activity by Bt2cAMP is reversible. ALP activity was induced synergistically in the presence of 1 mM sodium butyrate together with Bt2cAMP at concentrations from 0.01 to 1 mM. It was also found that in the presence of 1 mM Bt2cAMP, sodium butyrate increased ALP activity in the same manner as Bt2cAMP did in the presence of 1 mM sodium butyrate. Although dexamethasone, a potent glucocorticoid, had no effect on ALP activity in control cells, the hormone suppressed the ALP activity induced by Bt2cAMP in a dose-dependent manner. At concentrations above 0.2 mM, two xanthine derivatives, theophylline and 3-isobutyl-1-methyl-xanthine (IBMX), also inhibited the induction of ALP activity by 1 mM Bt2cAMP. Inhibitors of protein synthesis, cycloheximide (1.5 micrograms/ml) and pactamycin (10 micrograms/ml), as well as inhibitors of RNA synthesis, actinomycin D (2 micrograms/ml) and alpha-amanitin (50 micrograms/ml), suppressed the induction of ALP activity.  相似文献   

14.
The properties and role in peptide elongation of ATPase intrinsic to rat liver ribosomes were investigated. (i) Rat liver 80S ribosomes showed high ATPase and GTPase activities, whereas the GTPase activity of EF-1alpha and EF-2 was very low. mRNA, aminoacyl-tRNA, and elongation factors alone enhanced ribosomal ATPase activity and in combination stimulated it additively or synergistically. The results suggest that these translational components induce positive conformational changes of 80S ribosomes by binding to different regions of ribosomes. Translation inhibitors, tetracyclin and fusidic acid, inhibited ribosomal ATPase with or without elongational components. (ii) Two ATPase inhibitors, AMP-P(NH)P and vanadate, did not inhibit GTPase activities of EF-1alpha and EF-2 assayed as uncoupled GTPase, but they did inhibit poly(U)-dependent polyphe synthesis of 80S ribosomes. (iii) Effects of AMP-P(NH)P and ATP on poly(U)-dependent polyphe synthesis at various concentrations of GTP were examined. ATP enhanced the activity of polyphe synthesis even at high concentrations of GTP, suggesting a specific role of ATP. At low concentrations of GTP, the extent of inhibition by AMP-P(NH)P was very low, probably owing to the prevention of the reduction of the GTP concentration. (iv) Vanadate inhibited the translocation reaction by high KCl-washed polysomes. These findings together indicate that ribosomal ATPase participates in peptide translation by inducing positive conformational changes of mammalian ribosomes, in addition to its role of chasing tRNA from the E site.  相似文献   

15.
This study was undertaken to investigate the long-term effects of different substrates, in particular glucose, on the regulation of islet RNA metabolism and the relationship of this regulation to the metabolism and insulin production of the islet B-cell. For this purpose collagenase-isolated mouse islets were used either in the fresh state or after culture for 2 or 5 days in RPMI 1640 plus 10% calf serum supplemented with various test compounds. Islets cultured with 16.7 mM glucose contained more RNA than those cultured with 3.3 mM glucose. Culture of islets in glucose at low concentrations inhibited glucose-stimulated RNA synthesis and this inhibitory effect was reversed by prolonged exposure to high glucose concentrations. Culture with 10 mM leucine and 3.3 mM glucose or with 10 mM 2-ketoisocaproate and 3.3 mM glucose increased the total RNA content of islets as compared to that of islets cultured with 3.3 mM glucose alone. Islets cultured with 5 mM theophylline maintained a high RNA content in the presence of 3.3 mM glucose. Theophylline also increased the islet RNA content when added together with 16.7 mM glucose, as compared to 16.7 mM glucose alone. Theophylline probably exerted this effect by decreasing the rate of RNA degradation. Changes in islet RNA metabolism showed a close correlation to changes in islet total protein biosynthesis, whereas islet (pro)insulin biosynthesis and insulin release exhibited different glucose-dependency patterns. The response of islet oxygen uptake to glucose was similar to that of islet RNA and protein biosynthesis. It is concluded that the RNA content of the pancreatic islets is controlled at the levels of both synthesis and degradation. Glucose stimulates the RNA synthesis and inhibits its degradation. Moreover, the results suggest that regulation of RNA synthesis may be mediated through islet metabolic fluxes and the cAMP system.  相似文献   

16.
The activity of EF-2 was distinctly decreased after phosphorylation catalysed by a partly purified calmodulin and Ca2+ dependent protein kinase III. At the same time 32P from [gamma-32P]ATP was incorporated into EF-2 molecule. After dephosphorylation of EF-2 catalysed by alkaline phosphatase the activity of this factor was increased. This suggests that the phosphorylation-dephosphorylation of EF-2 is the regulatory process in the elongation step of the translation. Preliminary purification of the kinase III from rat liver resulted in 8-fold purified enzyme with a recovery of 60%.  相似文献   

17.
A bovine myocardial cell-free system, active in polyphenylalanine synthesis, has been studied. When Ca2+ was present under suboptimal Mg2+ concentrations (2 and 5 mM) a marked stimulation of the poly(U) directed macromolecular synthesis was obtained. Calcium did not stimulate the aminoacylation of bovine heart tRNAPhe The evidence suggests that calcium is required, in conjunction with other cations, for an efficient translation of synthetic polynucleotides.  相似文献   

18.
1. The effect of cyclic nucleotides on aggregates of dispersed embryonic neural retina cells was examined in order to study their influence upon macromolecular synthesis, i.e. protein and DNA. 2. Cyclic AMP, dibutyryl cAMP, cyclic GMP and dibutyryl cGMP were used at various concentrations (5 x 10(-4) -5 mM). 3. The incorporation of labeled precursors into DNA and protein were used to monitor the effect of cyclic nucleotides on cultured aggregates. 4. All nucleotides exhibited a stimulatory effect at 5 x 10(-4) and 5 x 10(-3) mM on macromolecular synthesis, with resulting growth and proliferation of chick neural retina cells. 5. High concentrations (5 x 10(-1) and 5 mM) of cyclic nucleotides exhibited an inhibitory effect upon macromolecular synthesis and a marked cytotoxic effect.  相似文献   

19.
The antineoplastic cyclic depsipeptide didemnin B (DB) inhibits protein synthesis in cells and in vitro. The stage at which DB inhibits protein synthesis in cells is not known, although dehydrodidemnin B arrests translation at the stage of polypeptide elongation. Inhibition of protein synthesis by DB in vitro also occurs at the elongation stage, and it was shown previously that DB prevents EF-2-dependent translocation in partial reaction models of protein synthesis. This inhibition of translocation displays an absolute requirement for EF-1alpha; however, the dependence upon EF-1alpha was previously unexplained. It is shown here that DB binds only weakly to EF-1alpha/GTP in solution, but binds to ribosome. EF-1alpha complexes with a dissociation constant K(d) = 4 microM. Thus, the inhibition of protein synthesis by DB appears to involve an interaction with both EF-1alpha and ribosomes in which all three components are required. Using diphtheria toxin-mediated ADP-ribosylation to assay for EF-2, it is demonstrated that DB blocks EF-2 binding to pre-translocative ribosome.EF-1alpha complexes, thus preventing ribosomal translocation. Based on this model for protein synthesis inhibition by DB, and the proposed mechanism of action of fusidic acid, evidence is presented in support of the Grasmuk model for EF-1alpha function in which this elongation factor does not fully depart the ribosome during polypeptide elongation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号