首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Saccharomyces cerevisiae Cdc14 protein phosphatase and Dbf2 protein kinase have been implicated to act during late M phase, but their functions are not known. We report here that CDC14 is a low-copy suppressor of the dbf2-2 mutation at 37°?C. The kinase activity of Dbf2 accumulated at a high level, in vivo, during a cdc14 arrest and was also much higher in cdc14 mutant cells at the permissive temperature of growth, therefore in cycling mutant cells than in cycling wild-type cells. This correlated with the accumulation of the more slowly migrating form of Dbf2, previously shown to correspond to the hyperphosphorylated form of the protein. The finding that the dbf2-2 mutation could be rescued following overproduction of catalytically inactive forms of Cdc14 suggested that the control of Dbf2 activity by Cdc14 might be only indirect and independent of Cdc14 phosphatase activity. However, it was found that Cdc14 could form oligomers within the cell, thus leaving open the possibility that catalytically inactive Cdc14 might associate with wild-type Cdc14 and rescue dbf2-2 in a phosphatase-dependent manner. We confirmed that overexpression of CDC14 could rescue mutations in CDC15, which encodes another kinase also implicated to act in late M phase. Cells of a cdc15-2dbf2-2 double mutant died at temperatures much lower than did either single mutant, whereas there was only a slight additive phenotype in the cdc14-1 dbf2-2 and cdc14-1 cdc15-2 double mutant cells. Finally, functional association between Cdc14 and Dbf2 (and also Cdc15) was confirmed by the finding that the cdc14, dbf2 and cdc15 mutations could be partially rescued by the addition of 1.2?M sorbitol to the culture medium. Our data are the first to demonstrate a functional link between Cdc14 and Dbf2 based on both biochemical and genetic information.  相似文献   

2.
3.
The Cdc14 family of serine-threonine phosphatases antagonizes CDK activity by reversing CDK-dependent phosphorylation events. It is well established that the yeast members of this family bring about the M/G1 transition. Budding yeast Cdc14 is essential for CDK inactivation at the end of mitosis and fission yeast Cdc14 homologue Flp1/Clp1 down-regulates Cdc25 to ensure the inactivation of mitotic CDK complexes to trigger cell division. However, the functions of human Cdc14 homologues remain poorly understood. Here we have tested the hypothesis that Cdc14A might regulate Cdc25 mitotic inducers in human cells. We found that increasing levels of Cdc14A delay entry into mitosis by inhibiting Cdk1-cyclin B1 activity. By contrast, lowering the levels of Cdc14A accelerates mitotic entry. Biochemical analyses revealed that Cdc14A acts through key Cdk1-cyclin B1 regulators. We observed that Cdc14A directly bound to and dephosphorylated Cdc25B, inhibiting its catalytic activity. Cdc14A also regulated the activity of Cdc25A at the G2/M transition. Our results indicate that Cdc14A phosphatase prevents premature activation of Cdk1 regulating Cdc25A and Cdc25B at the entry into mitosis.  相似文献   

4.
Cdc7/Dbf4 protein kinase is required for the initiation of DNA replication in Saccharomyces cerevisiae. Cdc7/Dbf4 protein kinase is not a cyclin-dependent kinase (CDK), but is regulated in a similar fashion in that the Cdc7 kinase subunit is inactive in the absence of the regulatory subunit Dbf4. In contrast to what is known about CDKs, Cdc7/Dbf4 protein kinase is shown to be an oligomer in the cell in this report. Genetic data that support this claim include interallelic complementation between several cdc7ts alleles and the cdc7T281A allele and also the results of experiments using the two-hybrid system with Cdc7 in both DNA-binding and transactivation domain plasmids. A molecular interaction between two different Cdc7 molecules was shown by using a HA-tagged Cdc7 protein that differs in size from the wild-type Cdc7 protein: an anti-HA antibody immunoprecipitates both proteins in appproximately equal stoichiometry. Analysis of the native molecular weight of Cdc7/Dbf4 protein kinase is consistent with oligomerization of the Cdc7 protein in that complexes of about 180 and 300 kDa were found. Oligomers of Cdc7 protein may exist for the purpose of allosteric regulation or to allow phosphorylation of multiple substrate protein molecules. Received: 4 January 1998 / Accepted: 16 June 1998  相似文献   

5.
6.
Cdc14, a dual-specificity protein phosphatase, has been previously implicated in triggering exit from mitosis in the yeast Saccharomyces cerevisiae. Using immunofluorescence microscopy and immunogold labeling, we demonstrate that a functional HA-tagged version of the phosphatase Cdc14 localizes to the nucleolus. Moreover, Cdc14-HA co-localized with the nucleolar NOP2 and GAR1 proteins. By immunofluorescence, Cdc14-HA was found in the nucleolus during most of the mitotic cell cycle, except during anaphase-telophase when it redistributed along the mitotic spindle. While this work was in progress, the same pattern of Cdc14 localization was described by others (Visintin et al, Nature 398 (1999) 818). Constitutive overexpression of CDC14 was toxic and led to cell cycle arrest of cells, mainly in G1. This correlated with the appearance of abnormal nuclear structures. A genetic search for suppressors of the lethality associated with CDC14 overexpression identified YJL076W. Because overproduction of Yj1076w buffered the toxic effect of Cdc14 overproduction, this suggested that it might be a substrate of Cdc14. This has indeed been found to be the case by others who recently described Yj1076w/Netl as a nucleolar protein that physically associates with Cdc14 (Shou et al, Cell 97 (1999) 233). The present data confirm several recently uncovered aspects of the regulation of Cdc14 localization and activity and suggest that the level of expression of CDC14 influences the structural organization of the nucleolus.  相似文献   

7.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) dephosphorylates and regulates multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs). However, the biological functions of this enzyme have not been clarified in vivo. To investigate the biological significance of CaMKP during zebrafish embryogenesis, we cloned and characterized zebrafish CaMKP (zCaMKP). The isolated cDNA clone possessed an open reading frame of 1272 bp encoding 424 amino acids and shared 47% and 48% amino acid identity with rat and human CaMKP, respectively. Interestingly, zCaMKP lacks the Glu cluster corresponding to residues 101-109 in the rat enzyme, and was not activated by polycations such as poly-l-lysine. The recombinant zCaMKP required Mg2+ rather than Mn2+ for activity. Furthermore, zCaMKP dephosphorylated CaMKIV but not phosphorylase a, α-casein, or extracellular signal-regulating kinase (ERK), suggesting that the enzyme regulates Ca2+ signaling pathways in zebrafish. Cotransfection of zCaMKP with mammalian CaMKI significantly decreased phospho-CaMKI in ionomycin-stimulated 293T cells. During embryogenesis, the expression of zCaMKP increased gradually after 48 h post-fertilization, as demonstrated by Western blotting using an anti-zCaMKP antibody. The knockdown of the zCaMKP gene with morpholino-based antisense oligonucleotides resulted in an increased incidence of embryos with severe morphological and cellular abnormalities, i.e., a significant increase in the number of round-shaped embryos and apoptotic cells in the whole body. A marked decrease in zCaMKP expression was observed in the antisense- but not control oligo-injected embryos. Embryonic death was rescued by coinjection with recombinant rat CaMKP but not with phosphatase-dead mutant (D194A). These results clearly show the significance of zCaMKP during zebrafish embryogenesis.  相似文献   

8.
Summary A novel protein kinase homologue (KNS1) has been identified in Saccharomyces cerevisiae. KNS1 contains an open reading frame of 720 codons. The carboxy-terminal portion of the predicted protein sequence is similar to that of many other protein kinases, exhibiting 36% identity to the cdc2 gene product of Schizosaccharomyces pombe and 34% identity to the CDC28 gene product of S. cerevisiae. Deletion mutations were constructed in the KNS1 gene. kns1 mutants grow at the same rate as wild-type cells using several different carbon sources. They mate at normal efficiencies, and they sporulate successfully. No defects were found in entry into or exit from stationary phase. Thus, the KNS1 gene is not essential for cell growth and a variety of other cellular processes in yeast.  相似文献   

9.
By inhibiting the activity of Cdc28/Clb cyclin-dependent protein kinase (CDK) complexes, Sic1 prevents the premature initiation of S phase in the yeast Saccharomyces cerevisiae. By testing a series of Sic1 truncation mutants, we have mapped the minimal domain necessary for Cdc28/Clb inhibition in vivo to the C-terminal 70 amino acids of Sic1. Site-directed mutagenesis was used to show that a sequence that matches the zRxL motif found in mammalian CDK inhibitors is essential for Sic1 function. This motif is not found in the Schizosaccharomyces CDK inhibitor p25rum1, which appears to be a structural and functional homolog of Sic1. Based on the mutational data and sequence comparisons, we argue that Sic1 and p25rum1 are structurally distinct from the known mammalian CDK inhibitors, but may bind CDK complexes in a manner more closely resembling CDK substrates like the retinoblastoma and E2F proteins. Received: 3 February 1999 / Accepted: 23 April 1999  相似文献   

10.
Proteolytic activation of protein kinase C (PKC)-delta has been associated with cell death induced by the DNA damaging agent cisplatin. In the present study, we have examined if PKCdelta is affected when cells acquire resistance to cisplatin. The level of PKCdelta was elevated in cisplatin-resistant HeLa (HeLa/CP) cells compared to parental HeLa cells. Prolonged cellular exposure to the PKC activator phorbol-12,13-dibutyrate (PDBu), caused downregulation of PKCdelta in HeLa cells but not in HeLa/CP cells. Treatment of HeLa cells with PDBu resulted in the translocation of PKCdelta from the cytosol to the membrane but it failed to induce PKCdelta translocation in HeLa/CP cells. PDBu, however, induced translocation and downregulation of PKCalpha in both HeLa and HeLa/CP cells. The ability of PDBu to enhance cisplatin-induced cell death was attenuated in cisplatin-resistant HeLa cells. Thus, a deregulation in PKCdelta was associated with reduced cellular sensitivity to cisplatin.  相似文献   

11.
Protein phosphatase 1 (PP1) is complexed with inhibitor 2 (I-2) in the cytosol. In rabbit muscle extract PP1.I-2 is activated upon preincubation with ATP/Mg. This activation is caused by phosphorylation of I-2 on Thr(72) by glycogen synthase kinase 3 (GSK3). We have found that PP1.I-2 in bovine brain extract is also activated upon preincubation with ATP/Mg. However, blocking GSK3 action by LiCl inhibited only approximately 29% of PP1 activity and indicated that GSK3 is not the sole PP1.I-2 activator in the brain. When bovine brain extract was analyzed by gel filtration PP1.I-2 and neuronal Cdc2-like protein kinase (NCLK), a heterodimer of Cdk5 and the regulatory p25 subunit, co-eluted as a approximately 450-kDa size species. The NCLK from the eluted column fractions bound to PP1-specific microcystin-Sepharose and glutathione S-transferase (GST)-I-2-coated glutathione-agarose beads. Similarly, PP1 from the eluted column fractions was pulled down with GST-Cdk5-coated glutathione-agarose beads. In vitro, NCLK phosphorylated I-2 on Thr(72) and activated PP1.I-2 in an ATP/Mg-dependent manner. NCLK bound to PP1 through its Cdk5 subunit and the PP1 binding region was localized to Cdk5 residues 28-41. Our data demonstrate that in brain extract PP1.I-2 and NCLK are associated within a complex of approximately 450 kDa and suggest that NCLK is one of the PP1.I-2-activating kinases in the mammalian brain.  相似文献   

12.
Nuclear Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP-N) is an enzyme that dephosphorylates and concomitantly downregulates multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) in vitro. However, the functional roles of this enzyme in vivo are not well understood. To investigate the biological significance of CaMKP-N during zebrafish embryogenesis, we cloned and characterized zebrafish CaMKP-N (zCaMKP-N). Based on the nucleotide sequences in the zebrafish whole genome shotgun database, we isolated a cDNA clone for zCaMKP-N, which encoded a protein of 633 amino acid residues. Transiently expressed full-length zCaMKP-N in mouse neuroblastoma, Neuro2a cells, was found to be localized in the nucleus. In contrast, the C-terminal truncated mutant lacking RKKRRLDVLPLRR (residues 575-587) had cytoplasmic staining, suggesting that the nuclear localization signal of zCaMKP-N exists in the C-terminal region. Ionomycin treatment of CaMKIV-transfected Neuro2a cells resulted in a marked increase in the phosphorylated form of CaMKIV. However, cotransfection with zCaMKP-N significantly decreased phospho-CaMKIV in ionomycin-stimulated cells. Whole mount in situ hybridization analysis of zebrafish embryos showed that zCaMKP-N is exclusively expressed in the head and neural tube regions. Gene knockdown of zCaMKP-N using morpholino-based antisense oligonucleotides induced significant morphological abnormalities in zebrafish embryos. A number of apoptotic cells were observed in brain and spinal cord of the abnormal embryos. These results suggest that zCaMKP-N plays a crucial role in the early development of zebrafish.  相似文献   

13.
Phosphorylation of the extracellular signal-regulated kinases (ERKs) on tyrosine and threonine residues within the TEY tripeptide motif induces ERK activation and targeting of substrates. Although it is recognized that phosphorylation of both residues is required for ERK activation, it is not known if a single phosphorylation of either residue regulates physiological functions. In light of recent evidence indicating that ERK proteins regulate substrate function in the absence of ERK enzymatic activity, we have begun to examine functional roles for partially phosphorylated forms of ERK. Using phosphorylation site--specific ERK antibodies and immunofluorescence, we demonstrate that ERK phosphorylated on the tyrosine residue (pY ERK) within the TEY activation sequence is found constitutively in the nucleus, and localizes to the Golgi complex of cells that are in late G2 or early mitosis of the cell cycle. As cells progress through metaphase and anaphase, pY ERK localization to Golgi vesicles is most evident around the mitotic spindle poles. During telophase, pY ERK associates with newly formed Golgi vesicles but is not found on there after cytokinesis and entry into G1. Increased ERK phosphorylation causes punctate distribution of several Golgi proteins, indicating disruption of the Golgi structure. This observation is reversible by overexpression of a tyrosine phosphorylation--defective ERK mutant, but not by a kinase-inactive ERK2 mutant that is tyrosine phosphorylated. These data provide the first evidence that pY ERK and not ERK kinase activity regulates Golgi structure and may be involved in mitotic Golgi fragmentation and reformation.  相似文献   

14.
Förster resonance energy transfer (FRET)-based reporters1 allow the assessment of endogenous kinase and phosphatase activities in living cells. Such probes typically consist of variants of CFP and YFP, intervened by a phosphorylatable sequence and a phospho-binding domain. Upon phosphorylation, the probe changes conformation, which results in a change of the distance or orientation between CFP and YFP, leading to a change in FRET efficiency (Fig 1). Several probes have been published during the last decade, monitoring the activity balance of multiple kinases and phosphatases, including reporters of PKA2, PKB3, PKC4, PKD5, ERK6, JNK7, Cdk18, Aurora B9 and Plk19. Given the modular design, additional probes are likely to emerge in the near future10. Progression through the cell cycle is affected by stress signaling pathways 11. Notably, the cell cycle is regulated differently during unperturbed growth compared to when cells are recovering from stress12.Time-lapse imaging of cells through the cell cycle therefore requires particular caution. This becomes a problem particularly when employing ratiometric imaging, since two images with a high signal to noise ratio are required to correctly interpret the results. Ratiometric FRET imaging of cell cycle dependent changes in kinase and phosphatase activities has predominately been restricted to sub-sections of the cell cycle8,9,13,14.Here, we discuss a method to monitor FRET-based probes using ratiometric imaging throughout the human cell cycle. The method relies on equipment that is available to many researchers in life sciences and does not require expert knowledge of microscopy or image processing.  相似文献   

15.
Cyclin-dependent kinases (CDKs) are involved in the control of cell cycle progression. Plant A-type CDKs are functional homologs of yeast Cdc2/Cdc28 and are expressed throughout the cell cycle. In contrast, B-type CDK (CDKB) is a family of mitotic CDKs expressed during the S/M phase, and its precise function remains unknown. Here, we identified two B2-type cyclins, CycB2;1 and CycB2;2, as a specific partner of rice CDKB2;1. The CDKB2;1-CycB2 complexes produced in insect cells showed a significant level of kinase activity in vitro, suggesting that CycB2 binds to and activates CDKB2. We then expressed green fluorescent protein (GFP)-fused CDKB2;1 and CycB2;2 in tobacco BY2 cells to investigate their subcellular localization during mitosis. Surprisingly, the fluorescence signal of CDKB2;1-GFP was tightly associated with chromosome alignment as well as with spindle structure during the metaphase. During the telophase, the signal was localized to the spindle midzone and the separating sister chromosomes, and then to the phragmoplast. On the other hand, the CycB2;2-GFP fluorescence signal was detected in nuclei during the interphase and prophase, moved to the metaphase chromosomes, and then disappeared completely after the cells passed through the metaphase. Co-localization of CDKB2;1-GFP and CycB2;2-GFP on chromosomes aligned at the center of the metaphase cells suggests that the CDKB2-CycB2 complex may function in retaining chromosomes at the metaphase plate. Overexpression of CycB2;2 in rice plants resulted in acceleration of root growth without any increase in cell size, indicating that CycB2;2 promoted cell division probably through association with CDKB2 in the root meristem.  相似文献   

16.
Summary The product of the CDC7 gene of Saccharomyces cerevisiae has multiple cellular functions, being needed for the initiation of DNA synthesis during mitosis as well as for synaptonemal complex formation and commitment to recombination during meiosis. The CDC7 protein has protein kinase activity and contains the conserved residues characteristic of the protein kinase catalytic domain. To determine which of the cellular functions of CDC7 require this protein kinase activity, we have mutated some of the conserved residues within the CDC7 catalytic domain and have examined the ability of the mutant proteins to support mitosis and meiosis. The results indicate that the protein kinase activity of the CDC7 gene product is essential for its function in both mitosis and meiosis and that this activity is potentially regulated by phosphorylation of the CDC7 protein.  相似文献   

17.
18.
PP5 is a ubiquitously expressed Ser/Thr protein phosphatase. High levels of PP5 have been observed in human cancers, and constitutive PP5 overexpression aids tumor progression in mouse models of tumor development. However, PP5 is highly conserved among species, and the roles of PP5 in normal tissues are not clear. Here, to help evaluate the biological actions of PP5, a Cre/loxP-conditional mouse line was generated. In marked contrast to the early embryonic lethality associated with the genetic disruption of other PPP family phosphatases (e.g. PP2A and PP4), intercrosses with mouse lines that ubiquitously express Cre recombinase starting early in development (e.g. MeuCre40 and ACTB-Cre) produced viable and fertile PP5-deficient mice. Phenotypic differences caused by the total disruption of PP5 were minor, suggesting that small molecule inhibitors of PP5 will not have widespread systemic toxicity. Examination of roles for PP5 in fibroblasts generated from PP5-deficient embryos (PP5(-/-) mouse embryonic fibroblasts) confirmed some known roles and identified new actions for PP5. PP5(-/-) mouse embryonic fibroblasts demonstrated increased sensitivity to UV light, hydroxyurea, and camptothecin, which are known activators of ATR (ataxia-telangiectasia and Rad3-related) kinase. Further study revealed a previously unrecognized role for PP5 downstream of ATR activation in a UV light-induced response. The genetic disruption of PP5 is associated with enhanced and prolonged phosphorylation of a single serine (Ser-345) on Chk1, increased phosphorylation of the p53 tumor suppressor protein (p53) at serine 18, and increased p53 protein levels. A comparable role for PP5 in the regulation of Chk1 phosphorylation was also observed in human cells.  相似文献   

19.
20.
The freshwater crayfish, Orconectes virilis, shows good anoxia tolerance, enduring 20 h in N2-bubbled water at 15°C. Metabolic responses to anoxia by tolerant species often include reversible phosphorylation control over selected enzymes. To analyze the role of serine/threonine kinases and phosphatases in signal transduction during anoxia in O. virilis, changes in the activities of cAMP-dependent protein kinase (PKA) and protein phosphatases 1, 2A, and 2C were measured in tail muscle and hepatopancreas over a time course of exposure to N2-bubbled water. A strong increase in the percentage of PKA present as the free catalytic subunit (% PKAc) occurred between 1 and 2 h of anoxia exposure whereas phosphatase activities were strongly reduced. This suggests that PKA-mediated events are important in the initial response by tissues to declining oxygen availability. As oxygen deprivation became severe and prolonged (5–20 h) these changes reversed; the % PKAc fell to below control values and activities of phosphatases returned to or rose above control values. Subcellular fractionation also showed a decrease in PKA associated with the plasma membrane after 20 h anoxia whereas cytosolic PKA content increased. PKAc purified from tail muscle showed a molecular weight of 43.8±0.4 kDa, a pH optimum of 6.8, a high affinity for Mg ATP (Km=131.0±14.4 μM) and Kemptide (Km=31.6±5.2 μM). Crayfish PKAc was sensitive to temperature change; a break in the Arrhenius plot occurred at approximately 15°C with a 2.5-fold rise in activation energy at temperatures <15°C. These studies demonstrate a role for serine/threonine protein kinases and phosphatases in the metabolic adjustments to oxygen depletion by crayfish organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号