首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atrial natriuretic peptide (ANP) induces activation of nitric oxide-synthase (NOS). Aims: to identify the isoform of NOS involved in ANP effects, to study whether ANP modifies NOS expression and to investigate the signaling pathways and receptors involved in NOS stimulation. NOS activation induced by ANP would be mediated by endothelial NOS (eNOS) since neuronal or inducible NOS inhibition did not alter ANP effect. The peptide induced no changes in eNOS protein expression. NOS activity stimulated by ANP, in the kidney, aorta and left ventricle, was partially abolished by the NPR-A/B antagonist, as well as PKG inhibition, but no difference in atria was observed. 8-Br-cGMP partially mimicked the effect of ANP on NOS in all tissues. NOS stimulation by ANP in atria disappeared when G protein was inhibited, but this effect was partial in the other tissues. Calmodulin antagonist abolished NOS stimulation via ANP. Inhibition of the PLC, PKC or PI3 kinase/Akt pathway failed to alter NOS activation induced by ANP. ANP would activate eNOS in the aorta, heart and kidney without modifying the expression of the enzyme. ANP would interact with NPR-C coupled via G proteins leading to the activation of Ca(2+)-calmodulin-dependent NOS in atria; while in ventricle, aorta and kidney, ANP could also interact with NPR-A/B, increasing cGMP, which in turns activates PKG to stimulate eNOS.  相似文献   

2.
Atrial natriuretic peptide (ANP) exerts its hypotensive, natriuretic and diuretic effects, almost in part, through the activation of nitric oxide synthase (NOS). The aim was to investigate the natriuretic receptor type and the signaling cascade involved in NOS activation induced by ANP. Male Wistar rats were sacrificed and NOS activity was determined in kidney, aorta and heart with L-[U14C]-arginine, as substrate. ANP and cANP (4-23), a selective NPR-C ligand, increased NOS activity in all tissues. ANP induced a more marked activation in aorta and kidney than cANP (4-23), but no difference in atria NOS activation was observed. NOS activity induced by both peptides was blunted by nifedipine (L-type channel blocker) and calmidazolium (calmodulin antagonist) in heart and aorta. In kidney, nifedipine and calmidazolium abolished NOS activity stimulated by cANP (4-23) but only partially inhibited NOS activity elicited by ANP. Gi inhibition with pertussis toxin abolished NOS activity stimulated by ANP and cANP in atria but only partially inhibited the increased NOS activity induced by ANP and cANP in kidney, aorta and ventricle. Our results show that NPR-C receptor would mediate the activation of NOS by ANP in atria. In kidney, aorta and ventricle, NOS activation would also involve NPR-A and/or B. ANP would interact with NPR-C coupled via Gi to activation Ca2+ -dependent NOS.  相似文献   

3.
4.
Three analogs of the atrial natriuretic peptide ANP(105-126), lacking the N-terminal exocyclic peptide segment and containing 2-mercaptoacetic acid, 3-mercaptopropionic acid or 4-mercaptobutyric acid in place of the cysteine residue in position 105 of the peptide sequence, were synthesized by the solid-phase method. The resulting des-amino analogs showed 2 to 4 times higher diuretic/natriuretic activity than the most active natural ANP and displayed a potent hypotensive effect as well. All three analogs were relatively less potent in various in vitro bioassays and in a binding assay, indicating that their high activities in vivo may be due to resistance to enzymatic degradation and to reduced non-specific tissue adsorption. These compounds not only will serve as useful pharmacologic tools but also represent prototypes for the development of further reduced-size ANP analogs.  相似文献   

5.
Atrial natriuretic peptide (ANP) attenuates LPS-induced inducible nitric oxide synthase (iNOS) expression in murine macrophages by destabilizing iNOS mRNA. Because elevated intracellular free Ca2+ levels [Ca2+]i reduce iNOS mRNA stability, the aim of the present study was to determine whether inhibition of iNOS by ANP is due to alterations in intracellular calcium. As determined by fluorescence photometry, ANP (10(-7) and 10(-6) mol/L) was shown to elevate intracellular calcium levels in bone marrow-derived macrophages. This effect seemed to be mediated via the guanylate cyclase-coupled A receptor, because dibutyryl-cGMP mimicked and the A-receptor antagonist HS-142-1 partially abrogated the effect of ANP. Because the Ca2+ increase was also observed in Ca2+-free buffer, it is suggested that the liberation of intracellular calcium pools contributes to the elevation of [Ca2+]i by ANP. The B-receptor ligand C-type natriuretic peptide (CNP), which does not alter iNOS expression, had no effect on [Ca2+]i. The Ca2+-ionophore 4-Br-A23187 and thapsigargin, a compound known to liberate Ca2+ from intracellular stores, were further demonstrated to reduce LPS-induced NO production in macrophages (Griess assay), confirming a functional link for elevated [Ca2+]i and iNOS inhibition. These effects were abrogated by coincubation with extra- as well as intracellular Ca2+ chelators (EGTA, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)). The inhibitory effect of ANP on NO production was also abrogated by Ca2+ chelation. These findings support a causal relationship between reduced iNOS induction and elevation of [Ca2+]i. Taken together, the data indicate that intracellular Ca2+ elevation by ANP is involved in the inhibition of LPS-induced nitric oxide production in macrophages.  相似文献   

6.
Atrial natriuretic peptide (ANP) is a hormone secreted in response to atrial or ventricular volume expansion and pressure overload, respectively. However, it has been found in studies with animals and patients an increase in ANP plasma concentration, during advanced septic shock, despite the fall in mean arterial pressure (MAP).

Several studies support the hypothesis that NO may be involved in the regulation of ANP release. Since NO may have an effect on ANP release, we hypothesized that NO pathway may participate in the control of the ANP release induced by the endotoxemic shock. Thus, the purpose of the present study was to assess the effect of the intravenous (i.v.) and intracereboventricular (i.c.v.) administration of aminoguanidine, an iNOS blocker, on plasma ANP levels and MAP during experimental endotoxemic shock.

Experiments were performed on adult male Wistar rats weighing 180–240 g. Rats were injected i.v. by bolus injection with 1.5 mg/kg of Lipopolysaccharide (LPS) or saline (0.5 mL) and were decapitated 2, 4 and 6 h after LPS injection for ANP determination by radioimmunoassay. In a separate set of experiments, rats received intravenous (i.v.) (100 mg/kg) or intracerebroventricular (i.c.v.) (250 μg in a final volume of 2 μL) injection of aminoguanidine (AG). Thirty minutes after the i.c.v. or i.v. injections, animals received LPS and were decapitated 2, 4 and 6 h later to determine plasma ANP concentration. In the two set of experiments MAP and heart rate (HR) were measured each 15 min for a period of 6 h using a polygraph.

When animals were injected with LPS, a reduction (p < 0.01) in MPA and an increase in HR occurred. A significant increase in plasma ANP concentration occurred, coinciding with the period of drop in blood pressure.

We found a significant increase in plasma ANP concentration after AG plus LPS injection, when compared to the rats treated with LPS plus saline. Further, the administration of AG plus LPS attenuated the decrease in the MAP after LPS and attenuated the increase in the HR when compared to the rats treated with LPS plus saline.

Our study suggests that inducible NOS pathway may activate an inhibitory control mechanism that attenuates ANP secretion, which is not regulated by the changes in blood pressure.  相似文献   


7.
The present study investigated the role of nitric oxide (NO) on atrial natriuretic peptide (ANP) release stimulated by angiotensin II (Ang II) (10(-7) M) in superfused sliced rat atrial tissue. The use of N(G)-nitro-L-arginine methyl ester (L-NAME) at 10(-4) M, an inhibitor of nitric oxide synthase did not modify basal ANP release. In presence of Ang II (10(-7) M), we observed that L-NAME enhanced ANP secretion induced by Ang II. Furthermore, cGMP levels increased significantly in the presence of Ang II and was attenuated by L-NAME. On the other hand, the perfusion of 8 bromo-cGMP (10(-5) M) with Ang II reduced the effect of this octapeptide on ANP secretion. Secondly, we evaluated the effect of authentic NO on ANP release and observed that perfusion of NO reduced significantly the effect of Ang II on ANP release. We propose that the effect of Ang II on ANP secretion was modulated by NO likely via cGMP pathway.  相似文献   

8.
In this study the ultrastructure of Rana esculenta skin is described. Cytochemical methods were used to localize guanylate cyclase in the presence of atrial natriuretic peptide and immunocytochemical methods showed the presence of the atrial natriuretic peptide in various levels of skin. The peptide is mainly found in the epithelium and in the lymph sacs of the tela subcutanea. Its receptors are located in the same zones and are indicated by guanylate cyclase activity. We demonstrate that frog skin is a target organ for atrial natriuretic peptide and propose that, at this level, the peptide carries out an important osmoregulatory role.  相似文献   

9.
In this study on the excretory apparatus of the Bufo bufo larvae, the ultrastructural features and the atrial natriuretic peptide (ANP)-system were examined using cytochemical and immunocytochemical methods. The early embryonic kidney, the pronephros, is replaced by a later stage, the mesonephros. The pronephros degenerates at the time of metamorphosis and the mesonephros becomes the functional kidney in the adult. Both these organs are targets for ANP, demonstrated by the presence of the specific receptors, indirectly highlighted by the cytochemical localization of the guanylate cyclase in the presence of exogenous atrial natriuretic peptide. This study concluded that the mesonephros produces ANP and thus clusters of cells containing ANP-like granules, positive to the anti-α ANP immunolocalization, were present along the mesonephric proximal tubule. The atrial natriuretic peptide system carries out an important osmoregulatory role in the excretory apparatus.  相似文献   

10.
Immunoreactive atrial natriuretic peptide (IR-ANP) was measured in plasma and atrium of normal and monocrotaline induced pulmonary hypertensive rats (PH rats). In these animals, there was right ventricular hypertrophy and right ventricular systolic pressure was elevated. Fourteen days after a single dose of monocrotaline (40 mg/kg), plasma IR-ANP concentrations were significantly elevated (964.3 +/- 63.0 pg/ml vs. 521.0 +/- 81.9 pg/ml in controls, p less than 0.001). Tissue levels of IR-ANP in the right atrium in PH rats was significantly lower than those in the controls (45.1 +/- 3.9 ng/mg vs. 240.5 +/- 10.4 ng/mg, p less than 0.001), while there was no significant difference in tissue levels of atrial IR-ANP in the left atrium between the two groups. Thus, development of pulmonary hypertension led to an increase in release of ANP from the right atrium.  相似文献   

11.
Pericardial fluid (PF) contains several vasoactive agents in higher concentrations than venous plasma (VP). However, with human atrial natriuretic peptide (ANP) controversial data have been reported in earlier studies performed on a limited number of patients (less than 20). The present study was designed to characterize the ANP levels in human PF and cardiac tissues, and to ascertain whether myocardial ischemic state is a major factor in determining ANP production of the human heart. In a total of 316 consecutive patients undergoing open heart surgery ANP levels in VP, PF, atrial and ventricular tissues were measured by radioimmunoassay and analyzed by high-performance liquid chromatography (HPLC). The data are presented as median and 25th-75th percentiles. Our results showed ANP concentration [ANP] of PF significantly exceeded that of VP and [ANP] in the atrial tissue was significantly higher than in the ventricular tissue (p < 0.001). In patients without myocardial ischemia (valvular heart disease) [ANP] in the PF was 258.3 (189.9-342.5) pg/ml, in the VP 28.4 (11.7-57.6) pg/ml and 151.7 (78.4-447.6) ng/mg in the atrial, 0.4 (0.2-1.6) ng/mg in the ventricular tissue. The corresponding values for patients with coronary artery disease were 208.1 (153.8-318.9) pg/ml in the PF, 19.8 (9.4-27.9) pg/ml in the VP, 129.6 (66.5-455.0) ng/mg in the atrial and 1.0 (0.1-1.8) ng/mg in the ventricular tissue. The ventricular tissue levels correlated to the atrial tissue levels (r = 0.317; p < 0.05). Great difference (p < 0.001) was found in the atrial tissue levels between females [414.6 (119.7-734.4) ng/mg] and males [105.4 (65.3-204.2) ng/mg]. In HPLC analysis the majority of the pericardial fluid and tissue ir-ANP coeluted with human ANP [99-126]. In conclusion, [ANP] in PF of cardiosurgical patients is higher by an order of magnitude than in VP. Intrapericardial ANP may reflect the peptide concentration in the myocardial interstitium and may represent a paracrine regulatory mechanism, which seems independent of ANP-induced putative antiischemic influences.  相似文献   

12.
Specific binding sites for atrial natriuretic peptide (ANP) were identified and characterized in primary cultures of human thyroid cells. Saturation analysis using [125I] alpha rat ANP as the ligand showed a single class of high affinity binding (Kd = 0.2 nM) which was inhibited by atriopeptin I and the alpha -human form of ANP, but not by a C-terminal fragment of the peptide. The number of ANP binding sites in these cultures was not altered by the thyroid hormone concentration of the medium. In a dose-response experiment, thyro-globulin secretion was significantly reduced in the presence of 0.01 nM ANP and was maximally reduced (to 25% of control value) with 10 nM ANP. Cyclic GMP production was increased threefold in the presence of 100 nM ANP, but was unchanged with lower doses (0.01 and 0.1 nM) of the peptide. The finding of receptors in thyroid follicular cells suggests a hitherto unrecognized role of ANP in the thyroid gland.  相似文献   

13.
14.
Quantitative autoradiography was used to localize and characterize atrial natriuretic peptide (ANP) receptors in the rat brain and to study their regulation. Peptide receptors are selectively located to circumventricular organs outside the blood brain barrier, such as the subfornical organ, and to brain areas involved in fluid and cardiovascular regulation. Dehydration, either by water deprivation of normal rats, or chronic dehydration present in homozygous Brattleboro rats lacking vasopressin, results in large increases in ANP binding in receptor number in the subfornical organ. In the deoxycorticosterone acetate (DOCA)-salt hypertensive model, only salt treatment, but not DOCA alone or the combination of DOCA-salt, increased the ANP receptor number in the subfornical organ and the choroid plexus. Both young and adult genetically hypertensive rats have a greatly decreased ANP receptor number in the subfornical organ and the choroid plexus. Selective displacement with an inactive analog lacking the disulfide bond (ANP 111-126) suggests that genetically hypertensive rats may lack C (clearance) atrial natriuretic peptide receptors. Our results implicate brain atrial natriuretic peptide receptors in the central response to alterations in fluid regulation and blood pressure.  相似文献   

15.
16.
Guanylyl cyclases (GCs), a ubiquitous family of enzymes that metabolize GTP to cyclic GMP (cGMP), are traditionally divided into membrane-bound forms (GC-A-G) that are activated by peptides and cytosolic forms that are activated by nitric oxide (NO) and carbon monoxide. However, recent data has shown that NO activated GC’s (NOGC) also may be associated with membranes. In the present study, interactions of guanylyl cyclase A (GC-A), a caveolae-associated, membrane-bound, homodimer activated by atrial natriuretic peptide (ANP), with NOGC, a heme-containing heterodimer (α/β) β1 isoform of the β subunit of NOGC (NOGCβ1) was specifically focused. NOGCβ1 co-localized with GC-A and caveolin on the membrane in human kidney (HK-2) cells. Interaction of GC-A with NOGCβ1 was found using immunoprecipitations. In a second set of experiments, the possibility that NOGCβ1 regulates signaling by GC-A in HK-2 cells was explored. ANP-stimulated membrane guanylyl cyclase activity (0.05 ± 0.006 pmol/mg protein/5 min; P < 0.01) and intra cellular GMP (18.1 ± 3.4 vs. 1.2 ± 0.5 pmol/mg protein; P < 0.01) were reduced in cells in which NOGCβ1 abundance was reduced using specific siRNA to NOGCβ1. On the other hand, ANP-stimulated cGMP formation was increased in cells transiently transfected with NOGCβ1 (530.2 ± 141.4 vs. 26.1 ± 13.6 pmol/mg protein; P < 0.01). siRNA to NOGCβ1 attenuated inhibition of basolateral Na/K ATPase activity by ANP (192 ± 22 vs. 92 ± 9 nmol phosphate/mg protein/min; P < 0.05). In summary, the results show that NOGCβ1 and GC-A interact and that NOGCβ1 regulates ANP signaling in HK-2 cells. The results raise the novel possibility of cross-talk between NOGC and GC-A signaling pathways in membrane caveolae.  相似文献   

17.
Atrial natriuretic peptide (ANP) plays a key regulatory role in arterial blood pressure homeostasis. We recently generated mice with selective deletion of the ANP receptor, guanylyl cyclase-A (GC-A), in vascular smooth muscle (SMC GC-A knockout (KO) mice) and reported that resting arterial blood pressure was completely normal in spite of clear abolition of the direct vasodilating effects of ANP (Holtwick, R., Gotthardt, M., Skryabin, B., Steinmetz, M., Potthast, R., Zetsche, B., Hammer, R. E., Herz, J., and Kuhn M. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7142-7147). The purpose of this study was to clarify mechanisms compensating for the missing vasodilator responses to ANP. In particular, we analyzed the effect of the endothelial, cGMP-mediated vasodilators C-type natriuretic peptide and nitric oxide (NO). In isolated arteries from SMC GC-A KO mice, the vasorelaxing sensitivity to sodium nitroprusside and the endothelium-dependent vasodilator, acetylcholine, was significantly greater than in control mice. There was no difference in responses to C-type natriuretic peptide or to the activator of cGMP-dependent protein kinase I, 8-para-chlorophenylthio-cGMP. The aortic expression of soluble GC (sGC), but not of endothelial NO synthase or cGMP-dependent protein kinase I, was significantly increased in SMC GC-A KO mice. Chronic oral treatment with the NO synthase inhibitor N(w)-nitro-l-arginine methyl ester increased arterial blood pressure, the effect being significantly enhanced in SMC GC-A KO mice. We conclude that SMC GC-A KO mice exhibit a higher vasodilating sensitivity to NO. This can be attributed to an enhanced expression of sGC, whereas the expression and/or activity levels of downstream cGMP-effector pathways are not involved. Increased vasodilating responsiveness to endothelial NO contributes to compensate for the missing vasodilating effect of ANP in SMC GC-A KO mice.  相似文献   

18.
We have previously shown that human plasma atrial alpha-natriuretic peptide (alpha-hANP) sequestering is a protective phenomenon against amyloid aggregation. In the present work, the possible role of lipoproteins as alpha-hANP binding factors has been investigated in vitro using an experimental model, developed in our laboratory, that allows to work at physiological concentrations. This approach consists of gel filtration on Sephacryl S-300 HR of big alpha-[(125)I]hANP generated in phosphate buffered saline or in human normal plasma supplemented or not with lipoproteins. The results of these experiments indicate that high density lipoproteins (HDL) are responsible for the ANP binding phenomenon observed in vitro, while low density lipoproteins and very low density lipoproteins do not directly interact with ANP. Moreover, the HDL remodeling process occurring in vitro has been analyzed during plasma incubation by monitoring the redistribution of lipids and apolipoproteins among the HDL subclasses. The changes in HDL size and composition observed in incubated plasma were compared with the redistribution of endogenous and labeled big ANP. The obtained results revealed that both tend to follow the molecular rearrangement in plasma of apolipoprotein A-I containing particles and suggested that, among HDL species, the small particles are mainly involved in the ANP binding phenomenon. This hypothesis was further demonstrated by ligand blotting experiments that confirmed the existence of differences in the ability of HDL particles to bind alpha-[(125)I]hANP.  相似文献   

19.
20.
The effect of calcitonin gene-related peptide(CGRP) on the release of atrial natriuretic peptide(ANP) was studied in spontaneously beating, isolated rat atria. CGRP stimulated the ANP release in a dose-dependent manner. When the atria were incubated with a combination of phentolamine, propranolol, and atropine, these antagonists blocked neither the rise in ANP release nor the positive chronotropic and inotropic effects of CGRP. Therefore, we conclude that CGRP stimulates ANP release as well as cardiac contractility independently of adrenergic and cholinergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号