首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, variability in reported Lyme disease incidence between 1993 and 2001 was analyzed in seven states in the northeastern part of the USA. Positive significant correlations at p < 0.05 were found in all states between early summer disease incidence and the June moisture index in the region two years prior. These correlations may reflect an enhanced nymphal Ixodes scapularis survival under wetter conditions. In some states, significant correlations were observed related to warmer winter weather a year and a half prior to disease incidence, which may have been due to higher survival and activity levels of the white-footed mouse, an important host for I. scapularis ticks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
More than 19,000 human cases of Lyme disease (LD) are reported each year in the United States. Lyme disease cases occur when humans are exposed to the bacterium Borrelia burgdorferi through the bite of an infected ixodid tick. The probability of human exposure to infected ticks results from a combination of human behaviors and entomological risk. Human behaviors include use of tick habitats, use of protective clothing, and grooming for tick removal. Entomological risks include the density of ticks in a habitat and the proportion of these that are infected with B. burgdorferi. Recent studies have suggested that humans are at higher risk of exposure to B. burgdorferi near edges between forests and herbaceous communities, including lawns and old fields, but whether this increased risk is a function of human behaviors, entomological risk, or both, is unknown. We assessed entomological risk across forest–old field edges in Dutchess County, NY. Densities of ticks and of infected ticks were considerably higher within forests than at forest–field edges, and were lowest within fields. Thus, edges between forests and fields do not pose a higher entomological risk than do the forests themselves, although risk at the edge is higher than in herbaceous habitat. Landscapes with abundant edges between forested and herbaceous habitat, and roughly even proportions of both, might attract both heavy human use and pose moderately high entomological risk, and thus could be targeted for mitigation. We suggest that determining appropriate methods for reducing human exposure to LD requires differentiating entomological risk from human behaviors.  相似文献   

3.
An understanding of the influence of climate change on Ixodes scapularis, the main vector of Lyme disease in North America, is a fundamental component in assessing changes in the spatial distribution of human risk for the disease. We used a climate suitability model of I. scapularis to examine the potential effects of global climate change on future Lyme disease risk in North America. A climate-based logistic model was first used to explain the current distribution of I. scapularis in North America. Climate-change scenarios were then applied to extrapolate the model in time and to forecast vector establishment. The spatially modeled relationship between I. scapularis presence and large-scale environmental data generated the current pattern of I. scapularis across North America with an accuracy of 89% (P < 0.0001). Extrapolation of the model revealed a significant expansion of I. scapularis north into Canada with an increase in suitable habitat of 213% by the 2080s. Climate change will also result in a retraction of the vector from the southern U.S. and movement into the central U.S. This report predicts the effect of climate change on Lyme disease risk and specifically forecasts the emergence of a tickborne infectious disease in Canada. Our modeling approach could thus be used to outline where future control strategies and prevention efforts need to be applied.  相似文献   

4.
Lyme disease, due to infection with the Ixodes-tick transmitted spirochete Borrelia burgdorferi, is the most common tick-transmitted disease in the northern hemisphere. Our understanding of the tick-pathogen-vertebrate host interactions that sustain an enzootic cycle for B. burgdorferi is incomplete. In this article, we describe a method for imaging the feeding of Ixodes scapularis nymphs in real-time using two-photon intravital microscopy and show how this technology can be applied to view the response of Lyme borrelia in the skin of an infected host to tick feeding.  相似文献   

5.
The aim of this study was to identify the factors determining the incidence of Lyme borreliosis (LB) in south‐western Poland by estimating the prevalence of B. burgdorferi s. l. in I. ricinus, and to analyze the temporal abundance of ticks in relation to epidemiological data on LB incidence. Host‐seeking ticks collected in 2011 in four districts in southwestern Poland were examined by nested PCR for the presence of B. burgdorferi s.l. In total, 2,507 host‐seeking I. ricinus were collected. The temporal abundance of ticks varied between districts. The minimal infection rates with B. burgdorferi s.l. were 11.5% for nymphs and 37.7% for adults. There were no statistical differences in the level of infection between districts either for nymphs or for adults. Five different genospecies were identified within the B. burgdorferi s.l. complex: B. garinii, B. afzelii, B. lusitaniae, B. valasiana, and B. burgdorferi s.s., and additionally B. miyamotoi. Our results point to a relationship between tick temporal abundance and LB incidence both for adults and nymphs. The high abundance of ticks is positively correlated with the number of LB cases in humans. The tick's abundance may be considered as a major factor in determining the LB risk in southwestern Poland.  相似文献   

6.
The purpose of this study was to determine whether dogs develop acquired resistance to adult Ixodes scapularis infestation in an experimental model. Five dogs were each infested with ten mating pairs of ticks every week for 7 consecutive weeks, another five dogs were each infested with ten mating pairs once every 2 weeks for 10 weeks and four dogs served as controls not exposed to ticks. All ticks were allowed to feed to repletion and were collected only after dropping from the host. Several variables were measured to determine the extent of blood feeding success. Regression analysis indicated that the engorgement success, survival and mean tick engorgement weight declined with repeated infestation in both groups of dogs (p<0.05). Tick oviposition as well as the F1 viability declined with each successive infestation in both groups. These results suggest that repeated infestation with I. scapularis elicits a protective immune response against tick feeding and could serve as a limiting factor in the spread and transmission of Borrelia burgdorferi.  相似文献   

7.
The timing of oviposition and hatching of Ixodes pacificus was investigated in the field and at constant temperatures in the laboratory. Replete females held at temperatures between 9 and 29°C began depositing eggs a mean of 9–70 days after drop off. Egg masses held between 12 and 25°C commenced hatching 25–178 days after the onset of oviposition. Eggs held at 9 or 29°C did not hatch. The lower temperature thresholds for development (LTD) for oviposition and hatching were 6.5 and 9°C, respectively. The number of degree days required for oviposition and hatching was 173 and 588, respectively. Replete females placed in the field on 2 December through to 8 March deposited eggs from 2 February through to 24 April; the eggs commenced hatching between 2 July and 21 August. Unfed larvae from two of 20 egg masses survived through the winter and fed readily when exposed to deer mice (Peromyscus maniculatus) on 22 April. Replete larvae were returned to the field and moulted between 9 and 21 August. Larvae exposed to deer mice in August, 4 weeks after hatching, also fed readily. Although further studies are needed to clarify the timing of nymphal development, the present study suggests that I. pacificus requires more than 1 year to complete its life cycle.  相似文献   

8.
Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.  相似文献   

9.
Ticks are not crawling needles, merely delivering infectious agents to vertebrate hosts. A sophisticated interplay takes place between ticks, pathogens, and vertebrate hosts. The relationship between Ixodes ticks and the Lyme disease spirochetes they transmit involves subtle changes in spirochete populations that maximize their chances of being transmitted. An understanding of this complex interplay will, hopefully, allow the development of new tools to block transmission of tick-borne agents. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Whether physicians should prophylactically treat tick bites in areas endemic for Lyme disease has been debated. The high rates of tick infection (10–50%) found in Lyme disease-endemic areas suggest that tick bites should be treated; conversely, the low rates of Lyme disease (1–4%) found in recent clinical trials of untreated tick-bite victims suggest caution in treatment. Medical advice given from Lyme-disease World Wide Web sites is equally contradictory, ranging from suggesting that all tick bites should be treated to suggesting that no tick bites be treated. To clarify this issue, we estimate the transmission probability of the causative agent of Lyme disease, Borrelia burgdorferi, for different durations of tick attachment. The data used to estimate this transmission probability is obtained from previously published animal studies. The accuracy of these estimates is assessed by comparing model predictions of the number of Lyme disease cases to that actually observed in clinical studies of Lyme disease. Our results suggest that tick bites should be treated only when it is known that the duration of tick attachment is longer than 48 hours.  相似文献   

11.
The human risk of contracting Lyme disease or other tick borne diseases transmitted by the tick species Ixodes ricinus is broadly linked to the tick nymph density. The study was performed in Rambouillet forest (Yvelines, France), a known focus of Lyme borreliosis, from January 1997 to December 1999. We used a nymph sampling methodology which permitted us to obtain a monthly nymph density index (from 0 to 5). Studying the seasonal nymph and larval activity patterns and estimating the larval developmental duration, we demonstrate the existence of an annual nymphal stock. Secondly, we elucidate how this stock is distributed throughout the year, month by month. Its distribution is principally dependent on two factors: the monthly mean ambient temperature and the proportion of active nymphs which find a host each month. Expected monthly nymph densities derived from a theoretical model describing the temperature-dependent stock distribution gave a good fit to the observed densities, accounting for between 76–86% of the monthly variation in observed nymph densities. Predicting the temporal distribution of nymph activity within a stable Lyme borreliosis focus enables more precise identification of risk periods.  相似文献   

12.
The phenology of tick emergence has important implications for the transmission of tick-borne pathogens. A long lag between the emergence of tick nymphs in spring and larvae in summer should increase transmission of persistent pathogens by allowing infected nymphs to inoculate the population of naive hosts that can subsequently transmit the pathogen to larvae to complete the transmission cycle. In contrast, greater synchrony between nymphs and larvae should facilitate transmission of pathogens that do not produce long-lasting infections in hosts. Here, we use 19 years of data on blacklegged ticks attached to small-mammal hosts to quantify the relationship between climate warming and tick phenology. Warmer years through May and August were associated with a nearly three-week advance in the phenology of nymphal and larval ticks relative to colder years, with little evidence of increased synchrony. Warmer Octobers were associated with fewer larvae feeding concurrently with nymphs during the following spring. Projected warming by the 2050s is expected to advance the timing of average nymph and larva activity by 8–11 and 10–14 days, respectively. If these trends continue, climate warming should maintain or increase transmission of persistent pathogens, while it might inhibit pathogens that do not produce long-lasting infections.  相似文献   

13.
Lyme disease, the most prevalent vector-borne disease in North America, is increasing in incidence and geographic distribution as the tick vector, Ixodes scapularis, spreads to new regions. We re-construct the spatial-temporal invasion of the tick and human disease in the Midwestern US, a major focus of Lyme disease transmission, from 1967 to 2018, to analyse the influence of spatial factors on the geographic spread. A regression model indicates that three spatial factors—proximity to a previously invaded county, forest cover and adjacency to a river—collectively predict tick occurrence. Validation of the predictive capability of this model correctly predicts counties invaded or uninvaded with 90.6% and 98.5% accuracy, respectively. Reported incidence increases in counties after the first report of the tick; based on this modelled relationship, we identify 31 counties where we suspect I. scapularis already occurs yet remains undetected. Finally, we apply the model to forecast tick establishment by 2021 and predict 42 additional counties where I. scapularis will probably be detected based upon historical drivers of geographic spread. Our findings leverage resources dedicated to tick and human disease reporting and provide the opportunity to take proactive steps (e.g. educational efforts) to prevent and limit transmission in areas of future geographic spread.  相似文献   

14.
Advancements in tick neurobiology may impact the development of acaricides to control those species that transmit human and animal diseases. Here, we report the first cloning and pharmacological characterization of two neurotransmitter binding G protein-coupled receptors in the Lyme disease (blacklegged) tick, Ixodes scapularis. The genes IscaGPRdop1 and IscaGPRdop2 were identified in the I. scapularis genome assembly and predicted as orthologs of previously characterized D1-like dopamine receptors in the fruit fly Drosophila melanogaster and honeybee Apis mellifera. Heterologous expression in HEK 293 cells demonstrated that each receptor functioned as a D1-like dopamine receptor because significant increases in levels of intracellular cyclic adenosine monophosphate (cAMP) were detected following dopamine treatment. Importantly, the receptors were distinct in their pharmacological properties regarding concentration-dependent response to dopamine, constitutive activity, and response to other biogenic amines. Exposure to a variety of dopamine receptor agonists and antagonists further demonstrated a D1-like pharmacology of these dopamine receptors and highlighted their differential activities in vitro.  相似文献   

15.
Unfed (questing) Ixodes ricinus ticks were collected by blanket dragging on a monthly basis from heather-dominated, Vaccinium-dominated and bracken-dominated vegetation communities from two different biogeographical regions of the UK (the Quantock Hills in Somerset, south west England and the North York Moors, north east England) throughout the spring and summer months of 1991 and 1992. Eighteen sites were monitored across the two regions and a total of 1920 blanket drags were carried out. Vaccinium sites showed high tick densities at all life stages, as did bracken sites. Significantly lower numbers of larval and nymphal ticks per drag were collected on heather sites than were collected on either Vaccinium (bilberry/whortleberry) or bracken sites, while similar numbers of adult ticks per drag were collected from each of the three vegetation communities. There was no significant difference between the mean numbers of any tick life stage collected on the Quantock Hills and those collected on the North York Moors on these vegetation communities or between the mean numbers of any tick life stage collected in 1991 and those collected in 1992 on these vegetation communities.  相似文献   

16.
Abstract.— We analyzed 725 Ixodes ricinus ticks (the principal vector of Lyme disease in Europe) collected in Switzerland in 1995 and 1996 (three and eight samples, respectively) and in Tunisia in 1996 (one sample) with five microsatellite markers. We found highly significant genetic differentiation between Swiss and Tunisian samples but detected almost no differentiation within Switzerland, even between those samples separated by the Alps. Interestingly, we found that I. ricinus females were more genetically related to one another than were males at a local scale, which would indicate a higher dispersal rate of immature males. Possible explanations for these findings in terms of sex-specific association of ticks with certain hosts (e.g., birds) and their epidemiological consequences are discussed.  相似文献   

17.
A linkage map of the Ixodes scapularis genome was constructed based upon segregation amongst 127 loci. These included 84 random amplified polymorphic DNA (RAPD) markers, 32 Sequence-Tagged RAPD (STAR) markers, 5 cDNAs, and 5 microsatellites in 232 F1 intercross progeny from a single, field-collected P1 female. A preliminary linkage map of 616 cM was generated across 14 linkage groups with one marker every 10.8 cM. Assuming a genome size of ∼109 bp, the relationship of physical to genetic distance is ∼300 kb/cM in the I. scapularis genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Spiders are important generalist predators in natural pest control. However, agricultural fields are highly disturbed and ephemeral habitats, which present a number of challenges to the organisms living there; likewise landscape diversity and heterogeneity are also thought to be important factors in determining spider spatial dynamics. To investigate the interactions between these factors, we present an individual-based simulation model, which integrates life history characteristics of a typical agrobiont linyphiid spider with a dynamic spatially explicit landscape representation. The landscape contains several habitat types of varying quality and varies in time and space. Simulations showed that spatial landscape diversity (number of habitat types available for the spiders) is crucial for the persistence of spiders, but that spatial heterogeneity (spatial arrangement of patches) only had little impact on spider abundance. The necessary landscape diversity could either be provided by a diverse crop rotation or by including refuges in the form of less frequently managed habitats in the landscape. The presence of refuges greatly boosted numbers of spiders in the landscape as a whole. The most important characteristics of refuge were sanctuary from pesticides and extra prey availability, whereas tillage frequency mattered less. The simulations indicated that agrobiont linyphiids combination of high dispersal abilities and high reproductive rate enables it to exploit the transient resources of the different habitats in the agricultural landscape.  相似文献   

19.
In vitro cultivation of the IDE8 cell line, derived from embryonic Ixodes scapularis ticks, constitutes an important system for the study of tick-borne pathogens, as these cells support growth of rickettsial species which are not normally transmitted by this tick. However, since cryopreservation of IDE8 cells is not always successful, there is a need to develop alternative ways to preserve these cells. In the present study, a suspension of IDE8 cells in culture medium was kept under refrigeration at 4°C for up to 60 days. Every 15 days, the suspension was mixed and aliquots were re-cultured in 2-ml tubes, under standardized conditions. In addition, three techniques for cryopreservation, using two different cryoprotectants (DMSO and glycerol), were evaluated. Medium changes were carried out every week and subculturing every 2 weeks. The development of cultures and their respective subcultures, after returning to standard culture temperature, was evaluated by percentage viability and by cellular morphology evaluated in Giemsa-stained cytocentrifuge smears. All cultures and subcultures appeared healthy, showing growth rates comparable to cultures that had not been kept under refrigeration. The results demonstrated that storage under refrigeration at 4°C is an efficient method for preservation of IDE8 cells for up to 60 days and that refrigeration may be preferable to cryopreservation for short-term preservation of IDE8 cells.  相似文献   

20.
Yale scientists played a pivotal role in the discovery of Lyme disease and are credited as the first to recognize, name, characterize, and treat the affliction. Today, Lyme disease is the most commonly reported vector-borne illness in the United States, affecting approximately 20,000 people each year, with the incidence having doubled in the past 10 years [1]. Lyme disease is the result of a bacterial infection transmitted to humans through the bite of an infected deer tick, which typically results in a skin rash at the site of attack. While most cases, when caught early, are easily treated by antibiotic therapy, delayed treatment can lead to serious systemic side effects involving the joints, heart, and central nervous system. Here we review Yale's role in the discovery and initial characterization of Lyme disease and how those early discoveries are crucial to our current understanding of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号