首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain RNA and DNA viruses that infect plants, insects, fish or poikilothermic animals encode Class 1 RNaseIII endoribonuclease-like proteins. dsRNA-specific endoribonuclease activity of the RNaseIII of rock bream iridovirus infecting fish and Sweet potato chlorotic stunt crinivirus (SPCSV) infecting plants has been shown. Suppression of the host antiviral RNA interference (RNAi) pathway has been documented with the RNaseIII of SPCSV and Heliothis virescens ascovirus infecting insects. Suppression of RNAi by the viral RNaseIIIs in non-host organisms of different kingdoms is not known. Here we expressed PPR3, the RNaseIII of Pike-perch iridovirus, in the non-hosts Nicotiana benthamiana (plant) and Caenorhabditis elegans (nematode) and found that it cleaves double-stranded small interfering RNA (ds-siRNA) molecules that are pivotal in the host RNA interference (RNAi) pathway and thereby suppresses RNAi in non-host tissues. In N. benthamiana, PPR3 enhanced accumulation of Tobacco rattle tobravirus RNA1 replicon lacking the 16K RNAi suppressor. Furthermore, PPR3 suppressed single-stranded RNA (ssRNA)—mediated RNAi and rescued replication of Flock House virus RNA1 replicon lacking the B2 RNAi suppressor in C. elegans. Suppression of RNAi was debilitated with the catalytically compromised mutant PPR3-Ala. However, the RNaseIII (CSR3) produced by SPCSV, which cleaves ds-siRNA and counteracts antiviral RNAi in plants, failed to suppress ssRNA-mediated RNAi in C. elegans. In leaves of N. benthamiana, PPR3 suppressed RNAi induced by ssRNA and dsRNA and reversed silencing; CSR3, however, suppressed only RNAi induced by ssRNA and was unable to reverse silencing. Neither PPR3 nor CSR3 suppressed antisense-mediated RNAi in Drosophila melanogaster. These results show that the RNaseIII enzymes of RNA and DNA viruses suppress RNAi, which requires catalytic activities of RNaseIII. In contrast to other viral silencing suppression proteins, the RNaseIII enzymes are homologous in unrelated RNA and DNA viruses and can be detected in viral genomes using gene modeling and protein structure prediction programs.  相似文献   

2.
3.
4.
5.
Spermatogenesis requires intact, fully competent Sertoli cells. Here, we investigate the functions of Dicer, an RNaseIII endonuclease required for microRNA and small interfering RNA biogenesis, in mouse Sertoli cell function. We show that selective ablation of Dicer in Sertoli cells leads to infertility due to complete absence of spermatozoa and progressive testicular degeneration. The first morphological alterations appear already at postnatal day 5 and correlate with a severe impairment of the prepubertal spermatogenic wave, due to defective Sertoli cell maturation and incapacity to properly support meiosis and spermiogenesis. Importantly, we find several key genes known to be essential for Sertoli cell function to be significantly down-regulated in neonatal testes lacking Dicer in Sertoli cells. Overall, our results reveal novel essential roles played by the Dicer-dependent pathway in mammalian reproductive function, and thus pave the way for new insights into human infertility.  相似文献   

6.
Ribonuclease III (RNaseIII) is responsible for processing and maturation of RNA precursors into functional rRNA, mRNA and other small RNA. In contrast to bacterial and yeast cells, higher eukaryotes contain at least three classes of RNaseIII, including class IV or dicer-like proteins. Here, we describe the functional characterization of AtRTL2, an Arabidopsis thaliana RNaseIII-like protein that belongs to a small family of genes distinct from the dicer family. We demonstrate that AtRTL2 is required for 3'external transcribed spacer (ETS) cleavage of the pre-rRNA in vivo. AtRTL2 localizes in the nucleus and cytoplasm, a nuclear export signal (NES) in the N-terminal sequence probably controlling AtRTL2 cellular localization. The modeled 3D structure of the RNaseIII domain of AtRTL2 is similar to the bacterial RNaseIII domain, suggesting a comparable catalytic mechanism. However, unlike bacterial RNaseIII, the AtRTL2 protein forms a highly salt-resistant homodimer that is only disrupted on treatment with DTT. These data indicate that AtRTL2 may use a dimeric mechanism to cleave double-stranded RNA, but unlike bacterial or yeast RNase III proteins, AtRTL2 forms homodimers through formation of disulfide bonds, suggesting that redox conditions may operate to regulate the activity of RNaseIII.  相似文献   

7.
A-to-I editing challenger or ally to the microRNA process   总被引:4,自引:0,他引:4  
Ohman M 《Biochimie》2007,89(10):1171-1176
  相似文献   

8.
Timmons L  Court DL  Fire A 《Gene》2001,263(1-2):103-112
Genetic interference mediated by double-stranded RNA (RNAi) has been a valuable tool in the analysis of gene function in Caenorhabditis elegans. Here we report an efficient induction of RNAi using bacteria to deliver double-stranded RNA. This method makes use of bacteria that are deficient in RNaseIII, an enzyme that normally degrades a majority of dsRNAs in the bacterial cell. Bacteria deficient for RNaseIII were engineered to produce high quantities of specific dsRNA segments. When fed to C. elegans, such engineered bacteria were found to produce populations of RNAi-affected animals with phenotypes that were comparable in expressivity to the corresponding loss-of-function mutants. We found the method to be most effective in inducing RNAi for non-neuronal tissue of late larval and adult hermaphrodites, with decreased effectiveness in the nervous system, in early larval stages, and in males. Bacteria-induced RNAi phenotypes could be maintained over the course of several generations with continuous feeding, allowing for convenient assessments of the biological consequences of specific genetic interference and of continuous exposure to dsRNAs.  相似文献   

9.
Multicellular development requires the correct spatial and temporal regulation of cell division and differentiation. These processes are frequently coordinated by the activities of various signaling pathways such as Notch signaling. From a screen for modifiers of Notch signaling in Drosophila we have identified the RNA helicase Belle, a recently described component of the RNA interference pathway, as an important regulator of the timing of Notch activity in follicle cells. We found that loss of Belle delays activation of Notch signaling, which results in delayed follicle cell differentiation and defects in the cell cycle. Because mutations in well-characterized microRNA components phenocopied the Notch defects observed in belle mutants, Belle might be functioning in the microRNA pathway in follicle cells. The effect of loss of microRNAs on Notch signaling occurs upstream of Notch cleavage, as expression of the constitutively active intracellular domain of Notch in microRNA-defective cells restored proper activation of Notch. Furthermore, we present evidence that the Notch ligand Delta is an important target of microRNA regulation in follicle cells and regulates the timing of Notch activation through cis inhibition of Notch. Here we have uncovered a complex regulatory process in which the microRNA pathway promotes Notch activation by repressing Delta-mediated inhibition of Notch in follicle cells.  相似文献   

10.
RNA干扰(RNAi)是由双链RNA触发的在mRNA水平进行的特异靶序列的基因沉默现象,广泛存在于动物、植物和病毒中,主要包括小干扰RNA(siRNA)及微小RNA(miRNA)两种作用途径。人工miRNA(amiRNA)是将天然miRNA的成熟序列替换成人工设计的靶向其他感兴趣基因的反义序列,通过天然miRNA的生成和作用途径达到RNAi的效果,具有干扰效果明显、作用迅速、毒性低等优点,拥有广阔的应用前景。我们对基于amiRNA的基因沉默技术进行了较为系统的介绍和总结,梳理了该技术的优缺点和适用范围,并展望了其进一步发展的方向和应用前景。  相似文献   

11.
Dicers at RISC; the mechanism of RNAi   总被引:29,自引:0,他引:29  
Tijsterman M  Plasterk RH 《Cell》2004,117(1):1-3
The pathway of RNA interference starts when Dicer cuts dsRNA into small interfering RNAs (siRNAs) that subsequently target homologous mRNAs for destruction. microRNA processing from stem loop precursors similarly requires Dicer activity. Two papers in this issue of Cell now demonstrate that Dicer is also essential for the execution phase of RNAi and explore the distinct requirements for Dicers in the siRNA and miRNA pathways.  相似文献   

12.
RNA interference (RNAi) denotes sequence-specific mRNA degradation induced by long double-stranded RNA (dsRNA). RNAi is an ancient eukaryotic defense mechanism against viruses and mobile elements. In mammals, endogenous RNAi was outstripped during evolution by the current innate and acquired immunity. The RNAi apparatus, which remains essentially intact, serves mostly the microRNA pathway, which regulates endogenous gene expression. Remarkably, several recent publications brought the mammalian endogenous RNAi pathway back into the spotlight. Here, I will provide an up-to-date review of the mammalian endogenous RNAi pathway with a focus on its defensive role and overlaps with miRNA and piRNA pathways.  相似文献   

13.
RNA诱导沉默复合体中的生物大分子及其装配   总被引:6,自引:0,他引:6  
宋雪梅  燕飞  杜立新 《遗传》2006,28(6):761-766
在RNA干扰机制中,双链RNA诱导同源RNA降解的过程依赖于RNA诱导沉默复合体(RISC)的活性。RISC由Dicer酶,Argonaute蛋白,siRNA等多种生物大分子装配而成,对这些大分子的结构和功能进行深入细致的研究,有助于进一步了解RISC的形成过程、作用方式,以及阐明整个RNAi过程的作用机制。研究表明,RISC中的Dicer具有RNaseIII结构域,在RNAi的起始阶段负责催化siRNA的产生,在RISC装配过程中起稳定RISC中间体结构和功能的作用;Argonaute蛋白是RISC中的核心蛋白,有PAZ和PIWI两个主要的结构域,前者为siRNA的传递提供结合位点,后者是RISC中的酶切割活性中心;siRNA是RISC完成特异性切割作用的向导,在成熟的RISC中虽然只包含siRNA的一条链,但siRNA在RISC形成过程中的双链结构是保证RNAi效应的决定因素。尽管RISC中还存在其他一些功能未知的蛋白质,但在RISC组分结构及功能研究方面取得的进展为建立一个可能的RISC装配模型提供了理论基础。  相似文献   

14.
RNAi: the nuts and bolts of the RISC machine   总被引:31,自引:0,他引:31  
Filipowicz W 《Cell》2005,122(1):17-20
  相似文献   

15.
MicroRNAs are short, single-stranded RNAs that arise from a transient precursor duplex. We have identified a novel activity in HeLa cell extracts that can unwind the let-7 microRNA duplex. Using partially purified material, we have shown that microRNA helicase activity requires ATP and has a native molecular mass of approximately 68 kDa. Affinity purification of the unwinding activity revealed co-purification of P68 RNA helicase. Importantly, recombinant P68 RNA helicase was sufficient to unwind the let-7 duplex. Moreover, like its native homolog, P68 RNA helicase did not unwind an analogous small interfering RNA duplex. We further showed that knockdown of P68 inhibited let-7 microRNA function. From our data, we conclude that P68 RNA helicase is an essential component of the let-7 microRNA pathway, and in conjunction with other factors, it may play a role in the loading of let-7 microRNA into the silencing complex.  相似文献   

16.
RNA silencing is a complex of mechanisms that regulate gene expression through small RNA molecules. The microRNA (miRNA) pathway is the most common of these in mammals. Genome‐encoded miRNAs suppress translation in a sequence‐specific manner and facilitate shifts in gene expression during developmental transitions. Here, we discuss the role of miRNAs in oocyte‐to‐zygote transition and in the control of pluripotency. Existing data suggest a common principle involving miRNAs in defining pluripotent and differentiated cells. RNA silencing pathways also rapidly evolve, resulting in many unique features of RNA silencing in different taxonomic groups. This is exemplified in the mouse model of oocyte‐to‐zygote transition, in which the endogenous RNA interference pathway has acquired a novel role in regulating protein‐coding genes, while the miRNA pathway has become transiently suppressed.  相似文献   

17.
18.
Short hairpin RNAs can provide stable gene silencing via RNA interference. Recent studies have shown toxicity in vivo that appears to be related to saturation of the endogenous microRNA pathway. Will these findings limit the therapeutic use of such hairpins?  相似文献   

19.
Adenosine deaminases acting on RNA (ADARs) are best known for altering the coding sequences of mRNA through RNA editing, as in the GluR‐B Q/R site. ADARs have also been shown to affect RNA interference (RNAi) and microRNA processing by deamination of specific adenosines to inosine. Here, we show that ADAR proteins can affect RNA processing independently of their enzymatic activity. We show that ADAR2 can modulate the processing of mir‐376a2 independently of catalytic RNA editing activity. In addition, in a Drosophila assay for RNAi deaminase‐inactive ADAR1 inhibits RNAi through the siRNA pathway. These results imply that ADAR1 and ADAR2 have biological functions as RNA‐binding proteins that extend beyond editing per se and that even genomically encoded ADARs that are catalytically inactive may have such functions.  相似文献   

20.
During microRNA (miRNA) biogenesis, the Microprocessor complex (MC), composed minimally of Drosha, an RNaseIII enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary-miRNA (pri-miRNA) to release the pre-miRNA stem–loop structure. Size-exclusion chromatography of the MC, isolated from mammalian cells, suggested multiple copies of one or both proteins in the complex. However, the exact stoichiometry was unknown. Initial experiments suggested that DGCR8 bound pri-miRNA substrates specifically, and given that Drosha could not be bound or cross-linked to RNA, a sequential model for binding was established in which DGCR8 bound first and recruited Drosha. Therefore, many laboratories have studied DGCR8 binding to RNA in the absence of Drosha and have shown that deletion constructs of DGCR8 can multimerize in the presence of RNA. More recently, it was demonstrated that Drosha can bind pri-miRNA substrates in the absence of DGCR8, casting doubt on the sequential model of binding. In the same study, using a single-molecule photobleaching assay, fluorescent protein-tagged deletion constructs of DGCR8 and Drosha assembled into a heterotrimeric complex on RNA, comprising two DGCR8 molecules and one Drosha molecule. To determine the stoichiometry of Drosha and DGCR8 within the MC in the absence of added RNA, we also used a single-molecule photobleaching assay and confirmed the heterotrimeric model of the human MC. We demonstrate that a heterotrimeric complex is likely preformed in the absence of RNA and exists even when full-length proteins are expressed and purified from human cells, and when hAGT-derived tags are used rather than fluorescent proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号