首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A method based on the laser microdissection pressure catapulting technique has been developed for isolation of whole intact cells. Using a modified tissue preparation method, one outer pair of apical cells and two pairs of sub-apical, chloroplast-containing cells, were isolated from glandular secretory trichomes of Artemisia annua. A. annua is the source of the widely used antimalarial drug artemisinin. The biosynthesis of artemisinin has been proposed to be located to the glandular trichomes. The first committed steps in the conversion of FPP to artemisinin are conducted by amorpha-4,11-diene synthase, amorpha-4,11-diene hydroxylase, a cytochrome P450 monooxygenase (CYP71AV1) and artemisinic aldehyde Δ11(13) reductase. The expression of the three biosynthetic enzymes in the different cell types has been studied. In addition, the expression of farnesyldiphosphate synthase producing the precursor of artemisinin has been investigated. Our experiments showed expression of farnesyldiphosphate synthase in apical and sub-apical cells as well as in mesophyl cells while the three enzymes involved in artemisinin biosynthesis were expressed only in the apical cells. Elongation factor 1α was used as control and it was expressed in all cell types. We conclude that artemisinin biosynthesis is taking place in the two outer apical cells while the two pairs of chloroplast-containing cells have other functions in the overall metabolism of glandular trichomes.  相似文献   

2.
To elucidate the fine-tuned temporal and spatial modulation of artemisinin production in annual wormwood (Artemisia annua), we conducted enzyme-linked immunosorbent assay-based immunoquantification of three key enzymes involved in artemisinin biosynthesis, amorpha-4,11-diene synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1), and cytochrome P450 reductase (CPR), in various tissues and under different growth conditions. The field-grown plants accumulate abundant ADS and CYP71AV1 but a trace amount of CPR in all tested tissues. Furthermore, ADS and CYP71AV1 accumulations in leaves are 16- and eightfold higher than in roots, and ten- and fourfold higher than in stems, respectively, demonstrating a tissue-specific expression pattern. Interestingly, the flowering field plants and cold-acclimated cultural plants produce higher levels of ADS and CYP71AV1 than non-flowering field plants or untreated cultural plants, indicating the environmental and developmental induction on ADS and CYP71AV1 genes and providing possible explanation for the observation that elevation of artemisinin level occurs after flowering.  相似文献   

3.
This paper provides evidence that salicylic acid (SA) can activate artemisinin biosynthesis in Artemisia annua L. Exogenous application of SA to A. annua leaves was followed by a burst of reactive oxygen species (ROS) and the conversion of dihydroartemisinic acid into artemisinin. In the 24 h after application, SA application led to a gradual increase in the expression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene and a temporary peak in the expression of the amorpha-4,11-diene synthase (ADS) gene. However, the expression of the farnesyl diphosphate synthase (FDS) gene and the cytochrome P450 monooxygenase (CYP71AV1) gene showed little change. At 96 h after SA (1.0 mM) treatment, the concentration of artemisinin, artemisinic acid and dihydroartemisinic acid were 54, 127 and 72% higher than that of the control, respectively. Taken together, these results suggest that SA induces artemisinin biosynthesis in at least two ways: by increasing the conversion of dihydroartemisinic acid into artemisinin caused by the burst of ROS, and by up-regulating the expression of genes involved in artemisinin biosynthesis.  相似文献   

4.
Abstract-Effects of mechanical wounding on gene expression involved in artemisinin biosynthesis and artemisinin production in Artemisia annua leaves were investigated. HPLC-ELSD analysis indicated that there was a remarkable enhancement of the artemisinin content in 2 h after wounding treatment, and the content reached the maximum value at 4 h (nearly 50% higher than that in the control plants). The expression profile analysis showed that many important genes (HMGR, ADS, CPR, and CYP71AV1) involved in the artemisinin biosynthetic pathway were induced in a short time after wounding treatment. This study indicates that the artemisinin biosynthesis is affected by mechanical wounding. The possible mechanism of the control of gene expression during wounding is discussed.  相似文献   

5.
6.
Artemisinin is a promising and potent antimalarial drug naturally produced by the plant Artemisia annua L. but in very low yield. Its artemisinin content is known to be greatly affected by both genotype and environmental factors. In this study, the production of artemisinin and leaf biomass in Artemisia annua L. was significantly increased by exogenous GA3 treatment. The effect of GA3 application on expression of proposed key enzymes involved in artemisinin yield was examined in both wild type (007) and FPS-overexpression (253-2) lines of A. annua. In the wild type (007) at 6 h post GA3 application there was an abrupt rise in FPS, ADS and CYP71AV1 expression and at 24 h a temporary and significant peak in artemisinin (1.45-fold higher than the control). After GA3 application in line 253-2, there was a dramatic rise in expression of FPS at 3 h, CYP71AV1 at 9 h and ADS at 72 h and accumulation of artemisinin after 7 days, which was a delay when compared with the wild type plant. Thus, increased artemisinin content from exogenous GA3 treatment was associated with increased expression of key enzymes in the artemisinin biosynthesis pathway. Interestingly, exogenous GA3 continuously enhanced artemisinin content from the vegetative stage to flower initiation in both plant lines and gave significantly higher leaf biomass than in control plants. Consequently, the artemisinin yield in GA3-treated plants was much higher than in control plants. Although the maximum artemisinin content was found at the full blooming stage [2.1% dry weight (DW) in 007 and 2.4% DW in 253-2], the highest artemisinin yield in GA3-treated plants was obtained during the flower initiation stage (2.4 mg/plant in 007 and 2.3 mg/plant in 235-2). This was 26.3 and 27.8% higher, respectively, than in non-treated plants 007 and 253-2. This study showed that exogenous GA3 treatment enhanced artemisinin production in pot experiments and should be suitable for field application.  相似文献   

7.
8.
9.
Annual wormwood (Artemisia annua L.) produces an array of complex terpenoids including artemisinin, a compound of current interest in the treatment of drug-resistant malaria. However, this promising antimalarial compound remains expensive and is hardly available on the global scale. Synthesis of artemisinin has not been proved to be feasible commercially. Therefore, increase in yield of naturally occurring artemisinin is an important area of investigation. The effects of inoculation by two arbuscular mycorrhizal (AM) fungi, Glomus macrocarpum and Glomus fasciculatum, either alone or supplemented with P-fertilizer, on artemisinin concentration in A. annua were studied. The concentration of artemisinin was determined by reverse-phase high-performance liquid chromatography with UV detection. The two fungi significantly increased concentration of artemisinin in the herb. Although there was significant increase in concentration of artemisinin in nonmycorrhizal P-fertilized plants as compared to control, the extent of the increase was less compared to mycorrhizal plants grown with or without P-fertilization. This suggests that the increase in artemisinin concentration may not be entirely attributed to enhanced P-nutrition and improved growth. A strong positive linear correlation was observed between glandular trichome density on leaves and artemisinin concentration. Mycorrhizal plants possessed higher foliar glandular trichome (site for artemisinin biosynthesis and sequestration) density compared to nonmycorrhizal plants. Glandular trichome density was not influenced by P-fertilizer application. The study suggests a potential role of AM fungi in improving the concentration of artemisinin in A. annua.  相似文献   

10.
11.
Artemisinin is a sesquiterpene antimalarial compound produced, though at low levels (0.1–1% dry weight), in Artemisia annua in which it accumulates in the glandular trichomes of the plant. Due to its antimalarial properties and short supply, efforts are being made to improve our understanding of artemisinin biosynthesis and its production. Native β-cyclodextrins, as well as the chemically modified heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) and 2-hydroxypropyl-β-cyclodextrins, were added to the culture medium of A. annua suspension cultures, and their effects on artemisinin production were analysed. The effects of a joint cyclodextrin and methyl jasmonate treatment were also investigated. Fifty millimolar DIMEB, as well as a combination of 50 mM DIMEB and 100 μM methyl jasmonate, was highly effective in increasing the artemisinin levels in the culture medium. The observed artemisinin level (27 μmol g−1 dry weight) was about 300-fold higher than that observed in untreated suspensions. The influence of β-cyclodextrins and methyl jasmonate on the expression of artemisinin biosynthetic genes was also investigated.  相似文献   

12.
13.
Artemisinin, a sesquiterpene lactone endoperoxide derived from Artemisia annua L., is the most effective antimalarial drug. In an effort to increase the artemisinin production, abscisic acid (ABA) with different concentrations (1, 10 and 100 μM) was tested by treating A. annua plants. As a result, the artemisinin content in ABA-treated plants was significantly increased. Especially, artemisinin content in plants treated by 10 μM ABA was 65% higher than that in the control plants, up to an average of 1.84% dry weight. Gene expression analysis showed that in both the ABA-treated plants and cell suspension cultures, HMGR, FPS, CYP71AV1 and CPR, the important genes in the artemisinin biosynthetic pathway, were significantly induced. While only a slight increase of ADS expression was observed in ABA-treated plants, no expression of ADS was detected in cell suspension cultures. This study suggests that there is probably a crosstalk between the ABA signaling pathway and artemisinin biosynthetic pathway and that CYP71AV1, which was induced most significantly, may play a key regulatory role in the artemisinin biosynthetic pathway.  相似文献   

14.
15.
Artemisinin, an antimalarial endoperoxide sesquiterpene, is synthesized in glandular trichomes of Artemisia annua L. A number of other enzymes of terpene metabolism utilize intermediates of artemisinin biosynthesis, such as isopentenyl and farnesyl diphosphate, and may thereby influence the yield of artemisinin. In order to study the expression of such enzymes, we have cloned the promoter regions of some enzymes and fused them to β-glucuronidase (GUS). In this study, we have investigated the expression of the monoterpene synthase linalool synthase (LIS) using transgenic A. annua carrying the GUS gene under the control of the LIS promoter. The 652 bp promoter region was cloned by the genome walker method. A number of putative cis-acting elements were predicted indicating that the LIS is driven by a complex regulation mechanism. Transgenic plants carrying the promoter-GUS fusion showed specific expression of GUS in T-shaped trichomes (TSTs) but not in glandular secretory trichomes, which is the site for artemisinin biosynthesis. GUS expression was observed at late stage of flower development in styles of florets and in TSTs and guard cells of basal bracts. GUS expression after wounding showed that LIS is involved in plant responsiveness to wounding. Furthermore, the LIS promoter responded to methyl jasmonate (MeJA). These results indicate that the promoter carries a number of cis-acting regulatory elements involved in the tissue-specific expression of LIS and in the response of the plant to wounding and MeJA treatment. Southern blot analysis indicated that the GUS gene was integrated in the A. annua genome as single or multi copies in different transgenic lines. Promoter activity analysis by qPCR showed that both the wild-type and the recombinant promoter are active in the aerial parts of the plant while only the recombinant promoter was active in roots. Due to the expression in TSTs but not in glandular trichomes, it may be concluded that LIS expression will most likely have little or no effect on artemisinin production.  相似文献   

16.
In vivo modulation of HMG-CoA reductase (HMGR) activity and its impact on artemisinin biosynthesis as well as accumulation were studied through exogenous supply of labeled HMG-CoA (substrate), labeled MVA (the product), and mevinolin (the competitive inhibitor) using twigs of Artemisia annua L. plants collected at the pre-flowering stage. By increasing the concentration (2–16 μM) of HMG-CoA (3-14C), incorporation of labeled carbon into artemisinin was enhanced from 7.5 to 17.3 nmol (up to 130%). The incorporation of label (14C) into MVA and artemisinin was inhibited up to 87.5 and 82.9%, respectively, in the presence of 200 μM mevinolin in incubation medium containing 12 μM HMG-CoA (3-14C). Interestingly, by increasing the concentration of MVA (2-14C) from 2 to 18 μM, incorporation of label (14C) into artemisinin was enhanced from 10.5 to 35 nmol (up to 233%). When HMG-CoA (3-14C) concentration was increased from 12 to 28 μM in the presence of 150 μM mevinolin, the inhibitions in the incorporation of label (14C) into MVA and artemisinin were, however, reversed and the labels were found to approach their values in twigs fed with 12 μM HMG-CoA (3-14C) without mevinolin. In another experiment, 14.2% inhibition in artemisinin accumulation was observed in twigs in the presence of 175 μM fosmidomycin, the competitive inhibitor of 1-deoxy-d-xylulose 5-phosphate reductase (DXR). HMG-CoA reductase activity and artemisinin accumulation were also increased by 18.6 to 24.5% and 30.7 to 38.4%, respectively, after 12 h of treatment, when growth hormones IAA (100 ppm), GA3 (100 ppm) and IAA + GA3 (50 + 50 ppm) were sprayed on A. annua plants at the pre-flowering stage. The results obtained in this study, hence, demonstrate that the mevalonate pathway is the major contributor of carbon supply to artemisinin biosynthesis and HMGR limits artemisinin synthesis and its accumulation in A. annua plants.  相似文献   

17.
Artemisia annua is the source of antimalarial phytomolecule, artemisinin. It is mainly produced and stored in the glandular secretory trichomes present in the leaves of the plant. Since, the artemisinin biosynthesis steps are yet to be worked out, in this investigation a microarray chip was strategized for the first time to shortlist the differentially expressing genes at a stage of plant producing highest artemisinin compared to the stage with no artemisinin. As the target of this study was to analyze differential gene expression associated with contrasting artemisinin content in planta and a genotype having zero/negligible artemisinin content was unavailable, it was decided to compare different stages of the same genotype with contrasting artemisinin content (seedling - negligible artemisinin, mature leaf - high artemisinin). The SCAR-marked artemisinin-rich (∼1.2%) Indian variety ‘CIM-Arogya’ was used in the present study to determine optimal plant stage and leaf ontogenic level for artemisinin content. A representative EST dataset from leaf trichome at the stage of maximal artemisinin biosynthesis was established. The high utility small scale custom microarray chip of A. annua containing all the significant artemisinin biosynthesis-related genes, the established EST dataset, gene sequences isolated in-house and strategically selected candidates from the A. annua Unigene database (NCBI) was employed to compare the gene expression profiles of two stages. The expression data was validated through semiquantitative and quantitative RT-PCR followed by putative annotations through bioinformatics-based approaches. Many candidates having probable role in artemisinin metabolism were identified and described with scope for further functional characterization.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号