首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary attraction to aggregation pheromones plays a central role in the host colonization behavior of the European spruce bark beetle Ips typographus. However, it is largely unknown how the beetles pioneering an attack locate suitable host trees, and eventually accept or reject them. To find possible biomarkers for host choice by I. typographus, we analyzed the chemistry of 58 Norway spruce (Picea abies) trees that were subsequently either (1) successfully attacked and killed, (2) unsuccessfully attacked, or (3) left unattacked. The trees were sampled before the main beetle flight in a natural Norway spruce-dominated forest. No pheromones were used to attract beetles to the experimental trees. To test the trees' defense potential, each tree was treated in a local area with the defense hormone methyl jasmonate (MeJ), and treated and untreated bark were analyzed for 66 different compounds, including terpenes, phenolics and alkaloids. The chemistry of MeJ-treated bark correlated strongly with the success of I. typographus attack, revealing major chemical differences between killed trees and unsuccessfully attacked trees. Surviving trees produced significantly higher amounts of most of the 39 analyzed mono-, sesqui-, and diterpenes and of 4 of 20 phenolics. Alkaloids showed no clear pattern. Differences in untreated bark were less pronounced, where only 1,8-cineole and (-)-limonene were significantly higher in unsuccessfully attacked trees. Our results show that the potential of individual P. abies trees for inducing defense compounds upon I. typographus attack may partly determine tree resistance to this bark beetle by inhibiting its mass attack.  相似文献   

2.
Plants can form an immunological memory known as defense priming, whereby exposure to a priming stimulus enables quicker or stronger response to subsequent attack by pests and pathogens. Such priming of inducible defenses provides increased protection and reduces allocation costs of defense. Defense priming has been widely studied for short-lived model plants such as Arabidopsis, but little is known about this phenomenon in long-lived plants like spruce. We compared the effects of pretreatment with sublethal fungal inoculations or application of the phytohormone methyl jasmonate (MeJA) on the resistance of 48-year-old Norway spruce (Picea abies) trees to mass attack by a tree-killing bark beetle beginning 35 days later. Bark beetles heavily infested and killed untreated trees but largely avoided fungus-inoculated trees and MeJA-treated trees. Quantification of defensive terpenes at the time of bark beetle attack showed fungal inoculation induced 91-fold higher terpene concentrations compared with untreated trees, whereas application of MeJA did not significantly increase terpenes. These results indicate that resistance in fungus-inoculated trees is a result of direct induction of defenses, whereas resistance in MeJA-treated trees is due to defense priming. This work extends our knowledge of defense priming from model plants to an ecologically important tree species.  相似文献   

3.
1 A field experiment was carried out to test the hypothesis that treatment of Norway spruce trees with the Ips typographus-transmitted blue-stain fungus Ceratocystis polonica enhances tree resistance to later mass attack by this bark beetle. 2 Twenty-five mature trees were pretreated by inoculating a non-lethal dose of the fungus into the bark, while 18 trees served as untreated controls. Three and a half weeks after treatment a bark beetle attack was initiated by attaching dispensers with I. typographus pheromone to the tree trunks. 3 A significantly larger proportion (67%) of the control trees than of the pretreated trees (36%) were killed by the beetle attack. The result is discussed in relation to recent results regarding defence mechanisms in Norway spruce trees.  相似文献   

4.
5.
6.
The terpenoid and phenolic constituents of conifers have been implicated in protecting trees from infestation by bark beetles and phytopathogenic fungi, but it has been difficult to prove these defensive roles under natural conditions. We used methyl jasmonate, a well-known inducer of plant defense responses, to manipulate the biochemistry and anatomy of mature Picea abies (Norway spruce) trees and to test their resistance to attack by Ips typographus (the spruce bark beetle). Bark sections of P. abies treated with methyl jasmonate had significantly less I. typographus colonization than bark sections in the controls and exhibited shorter parental galleries and fewer eggs had been deposited. The numbers of beetles that emerged and mean dry weight per beetle were also significantly lower in methyl jasmonate-treated bark. In addition, fewer beetles were attracted to conspecifics tunneling in methyl jasmonate-treated bark. Stem sections of P. abies treated with methyl jasmonate had an increased number of traumatic resin ducts and a higher concentration of terpenes than untreated sections, whereas the concentration of soluble phenolics did not differ between treatments. The increased amount of terpenoid resin present in methyl jasmonate-treated bark could be directly responsible for the observed decrease in I. typographus colonization and reproduction.  相似文献   

7.
Abstract 1 To maintain biodiversity in managed spruce forests in Sweden more wind‐felled trees must be retained. However, there is concern among forest owners that this may result in higher tree mortality caused by the spruce bark beetle, Ips typographus (L.) (Col. Scolytidae). 2 To simulate wind‐felled trees, living spruce trees were cut at spruce stand edges bordering fresh clear‐cuttings. Treatments comprised edges with zero, one or five cut trees colonized by I. typographus. Edges with naturally wind‐felled trees colonized by I. typographus were also included in the analyses. 3 During the two following summers, the number of trees killed by I. typographus did not differ between edges with and without felled trees, or between edges with one or five felled trees. 4 Within edges with felled trees, there were more killed trees close to the felled trees than at other parts of the edges. Thus, felled trees provided focal points for attacks within edges. 5 It is concluded that small numbers of wind‐felled trees colonized by I. typographus may be left near spruce stand edges without increasing the risk of beetle‐induced tree mortality.  相似文献   

8.
  1. Several time-series analyses have demonstrated that after extreme summer drought bark beetle damage increased. However, studies predicting stand susceptibility over large spatial extents are limited by technical constraints in obtaining detailed, spatially-explicit data on infestation spot occurrence.
  2. Using a unique dataset of georeferenced bark beetle infestation data, we tested whether the spatial variation of local growing conditions of forest stands, topography, and landscape variables modified the local occurrence of Ips typographus infestations after a severe hot drought in Central Europe.
  3. Bark beetle infestation occurrence depended on soil-related aridity intensity, elevation, slope, and soil conditions. We showed that elevation interacted with growing conditions and topography. At low elevations, spruce forests growing on flat areas and wetter soils were more sensitive to the infestations. On the contrary, forests on steep slopes and soils with low water availability were rarely attacked. At the landscape scale, bark beetle damage increased with host tree cover but decreased with compositional diversity.
  4. Our findings are generally consistent with the growth-differentiation balance hypothesis that predicts that trees growing under chronic dry conditions tend to be more resistant against biotic disturbances.
  5. Spruce stands at low elevations located in homogeneous landscapes dominated by spruce were those more exposed to bark beetles in the initial phase of a drought-induced outbreak.
  相似文献   

9.
1 Although mountain pine beetle Dendroctonus ponderosae Hopkins are able to utilize most available Pinus spp. as hosts, successful colonization and reproduction in other hosts within the Pinaceae is rare.
2 We observed successful reproduction of mountain pine beetle and emergence of new generation adults from interior hybrid spruce Picea engelmannii × glauca and compared a number of parameters related to colonization and reproductive success in spruce with nearby lodgepole pine Pinus contorta infested by mountain pine beetle.
3 The results obtained indicate that reduced competition in spruce allowed mountain pine beetle parents that survived the colonization process to produce more offspring per pair than in more heavily-infested nearby pine.
4 We also conducted an experiment in which 20 spruce and 20 lodgepole pines were baited with the aggregation pheromone of mountain pine beetle. Nineteen pines (95%) and eight spruce (40%) were attacked by mountain pine beetle, with eight (40%) and three (15%) mass-attacked, respectively.
5 Successful attacks on nonhost trees during extreme epidemics may be one mechanism by which host shifts and subsequent speciation events have occurred in Dendroctonus spp. bark beetles.  相似文献   

10.
1. A spatio‐temporal study of host selection and local spread of a solitary bark beetle attacking live spruce Dendroctonus micans (Kugelann) was carried out using a combination of standard statistical methods, geostatistical analyses, and modelling. The study was based on data from three plots (150–300 trees, 0.3–1 ha) from 1978 to 1993. All trees were mapped and successful and abortive bark‐beetle attacks on each tree were counted annually. Because the attacked trees usually survived, temporal attack patterns as well as spatial patterns could be analysed. 2. The distribution of successful insect attacks on the trees was slightly aggregative, indicating some degree of choice rather than totally random establishment. 3. The level of yearly individual attacks per tree was very stable, suggesting that D. micans usually leave the host in which they develop. 4. The attacked trees were distributed randomly in the plots; at the study's spatial scale, the insects dispersed freely throughout the plot (no spatial dependence). 5. On the other hand, time dependence was strong; some trees were attacked repeatedly while others were left untouched. 6. Among a choice of scenarios (random attack, fixed variability in individual host susceptibility, induced host susceptibility following random attack), the best fit was obtained with the model involving induced individual host susceptibility. This type of relation to the host tree contrasts strongly with patterns generally described in host–plant relationships (including gregarious, tree‐killing bark beetles), where local herbivore damage results in induced resistance. 7. These results suggest that the first attacks in a new stand are made at random, that all or most of the beetles emerging from a tree disperse and resample the stand, and that they settle preferentially on trees that were colonised successfully by previous generations.  相似文献   

11.
The behavior of 118 spruce bark beetles, Ips typographus,was observed on trees under colonization. Most individuals were followed from when they landed until they entered or left the tree. Both males and females spent most time inspecting crevices and searching for a place to start boring or for a hole to enter. These behaviors accounted for 87 and 70% of all behavioral acts recorded for males and females, respectively. Females entered galleries with males only after a period of pushing at the gallery entrance. Males spent on average 3 min and females 4 min on the bark before entering or leaving the tree. Thirty-three percent of the beetles eventually entered the tree, 31% flew away, 35% dropped from the host, and one beetle was eaten by a predator. The results are discussed in relation to the question of mate choice in bark beetles and to studies on attack dynamics of spruce bark beetle populations.  相似文献   

12.
The bark beetle Ips typographus has different hibernation environments, under the bark of standing trees or in the forest litter, which is likely to affect the beetle-associated fungal flora. We isolated fungi from beetles, standing I. typographus-attacked trees, and forest litter below the attacked trees. Fungal identification was done using cultural and molecular methods. The results of the two methods in detecting fungal species were compared. Fungal communities associated with I. typographus differed considerably depending on the hibernation environment. In addition to seven taxa of known ophiostomoid I. typographus-associated fungi, we detected 18 ascomycetes and anamorphic fungi, five wood-decaying basidomycetes, 11 yeasts, and four zygomycetes. Of those, 14 fungal taxa were detected exclusively from beetles that hibernated under bark, and six taxa were detected exclusively from beetles hibernating in forest litter. The spruce pathogen, Ceratocystis polonica, was detected occasionally in bark, while another spruce pathogen, Grosmannia europhioides, was detected more often from beetles hibernating under the bark as compared to litter. The identification method had a significant impact on which taxa were detected. Rapidly growing fungal taxa, e.g. Penicillium, Trichoderma, and Ophiostoma, dominated pure culture isolations; while yeasts dominated the communities detected using molecular methods. The study also demonstrated low frequencies of tree pathogenic fungi carried by I. typographus during its outbreaks and that the beetle does not require them to successfully attack and kill trees.  相似文献   

13.
  1. A warming climate, as predicted under current climate change projections, is likely to influence the population dynamics of many forest insect species. Numerous bark beetle species in both Europe and North America have already responded to a warming climate by significantly expanding their geographical ranges.
  2. The aim of the current study was to investigate how populations of bark beetles within stands of Sitka spruce, a widely planted non-native commercial plantation tree species in the U.K., were likely to respond to a warming climate. Experimental plots were established in stands of Sitka spruce over elevational gradients in two commercial forest plantations, and the abundance and emergence times of key bark beetle species were assessed over a 3-year period using flight interception traps. The air temperature difference between the lowest and highest experimental plot in each forest was consistently >1°C throughout the 3-year period.
  3. In general, the abundance of the most dominant bark beetle species (e.g. Trypodendron, Dryocoetes, Hylastes spp.) was higher, and emergence times tended to be earlier in the year at the lower elevation plots, where temperatures were higher, although not all bark beetle species responded in the same manner.
  4. The results of the study indicated that, under the projected future climate warming scenarios, monoculture Sitka spruce stands at low elevations may potentially be more vulnerable to significant outbreak events from existing or invasive bark beetle species. Hence, consideration of establishing more resilient forests of Sitka spruce by diversifying the species composition and structure of Sitka spruce stands is discussed.
  相似文献   

14.
We compared naturally baited trapping systems to synthetically baited funnel traps and fallen trap trees for suppressing preoutbreak spruce beetle, Dendroctonus rufipennis Kirby, populations. Lures for the traps were fresh spruce (Picea spp.) bolts or bark sections, augmented by adding female spruce beetles to create secondary attraction. In 2003, we compared a naturally baited system ("bolt trap") with fallen trap trees and with synthetically baited funnel traps. Trap performance was evaluated by comparing total beetle captures and spillover of attacks into nearby host trees. Overall, the trap systems did not significantly differ in spruce beetle captures, although bolt traps caught 6 to 7 times more beetles than funnel traps during the first 4 wk of testing. Funnel traps with synthetic lures had significantly more spillover than either trap trees or bolt traps. The study was repeated in 2004 with modifications including an enhanced blend synthetic lure. Again, trap captures were generally similar among naturally and synthetically baited traps, but naturally baited traps had significantly less spillover. Although relatively labor-intensive, the bolt trap could be used to suppress preoutbreak beetle populations, especially when spillover is undesirable. Our work provides additional avenues for management of spruce beetles and suggests that currently used synthetic lures can be improved.  相似文献   

15.
  • 1 After storm disturbances, there is a risk for degradation of the quality of fallen trees, and for subsequent tree mortality caused by the spruce bark beetle Ips typographus (L.) (Coleoptera: Curculionidae). Models assessing the risk for bark beetle colonization of different kinds of storm gaps would be a valuable tool for management decisions.
  • 2 The present study aimed to determine which gap and landscape characteristics are correlated with the probability of colonization of wind‐felled Norway spruce trees by I. typographus.
  • 3 The study included 36 storm gaps, varying in size from three to 1168 wind‐felled spruces, created by the storm Gudrun in southern Sweden in January 2005.
  • 4 In the first summer, on average, 5% of the wind‐felled spruces were colonized by I. typographus. The percentage of colonized wind‐felled trees per gap was negatively correlated with the total area of storm gaps within 2000 m in the surrounding forest landscape.
  • 5 In the second summer, the proportion of colonized trees increased to 50%. Both gap (mean diameter of wind‐felled trees and basal area of living spruce trees) and landscape variables (amount of spruce forest) were significantly correlated with colonization percentage and explained almost 50% of the variation between gaps.
  • 6 There was no relationship between gap area and colonization percentage. This implies that landscapes with many large storm gaps, where logging resources will be most effectively used, should be salvaged first.
  相似文献   

16.
1. The great spruce bark beetle Dendroctonus micans is a primary pest of spruce in Europe. It is unusual among Eurasian scolytids in that apparently healthy trees are attacked by solitary adults, but larvae feed en masse , in response to a larval aggregation pheromone.
2. The effect of brood size on larval growth was determined in experiments on detached bark, logs and living trees. A positive relationship was found between brood size and larval growth in experiments started with either eggs or larvae up to fifth instar. The relationship appeared to be independent of the effects of both preformed and induced defences in bark.
3. No evidence was found to support the hypothesis that larvae feeding in groups spend a greater proportion of time feeding. Addition of resin to egg chambers in detached bark pieces resulted in high mortality of first-instar larvae. A possible role for larval aggregation in minimizing the effects of host defences is discussed.  相似文献   

17.
18.
Climate change has amplified eruptive bark beetle outbreaks over recent decades, including spruce beetle (Dendroctonus rufipennis). However, for projecting future bark beetle dynamics there is a critical lack of evidence to differentiate how outbreaks have been promoted by direct effects of warmer temperatures on beetle life cycles versus indirect effects of drought on host susceptibility. To diagnose whether drought‐induced host‐weakening was important to beetle attack success we used an iso‐demographic approach in Engelmann spruce (Picea engelmannii) forests that experienced widespread mortality caused by spruce beetle outbreaks in the 1990s, during a prolonged drought across the central and southern Rocky Mountain region. We determined tree death date demography during this outbreak to differentiate early‐ and late‐dying trees in stands distributed across a landscape within this larger regional mortality event. To directly test for a role of drought stress during outbreak initiation we determined whether early‐dying trees had greater sensitivity of tree‐ring carbon isotope discrimination (?13C) to drought compared to late‐dying trees. Rather, evidence indicated the abundance and size of host trees may have modified ?13C responses to drought. ?13C sensitivity to drought did not differ among early‐ versus late‐dying trees, which runs contrary to previously proposed links between spruce beetle outbreaks and drought. Overall, our results provide strong support for the view that irruptive spruce beetle outbreaks across North America have primarily been driven by warming‐amplified beetle life cycles whereas drought‐weakened host defenses appear to have been a distant secondary driver of these major disturbance events.  相似文献   

19.
The mango sudden death syndrome has become a serious threat to the mango industry and caused significant decline in mango production worldwide. The bark beetle Hypocryphalus mangiferae (Stebbing) (Coleoptera: Curculionidae: Scolytinae) has been suggested as a potential vector of the disease based primarily on field observations with little or no supporting empirical data. In this study, we investigated the role of infected mango trees in host attraction and colonization by H. mangiferae to determine if beetle attack and colonization contributes to the disease progression on mango trees. Initially, the role of various stress factors on beetle attraction and disease progression was assessed under lathe house conditions from 2008 to 2009. Results suggest that symptomatic or recently inoculated mango trees (without any obvious symptoms) are preferentially colonized by H. mangiferae. Although not significant, high numbers of beetles attacked stressed or wounded mango trees, compared to healthy or dead mango trees. Disease symptoms after beetle colonization, such as bark splitting, wilting and oozing, were further evaluated. These symptoms showed positive correlation with the degree of disease severity and host plant condition. Furthermore, two fungi, Ceratocystis fimbriata and Lasiodiplodia theobromae, were frequently isolated from the beetle and beetle-colonized trees. Based on these findings, they suggests that H. mangiferae can vector multiple fungi associated with mango sudden decline disease and play a significant role in outbreaks of this disease.  相似文献   

20.
云南切梢小蠹对云南松树的蛀干危害及致死机理   总被引:2,自引:0,他引:2  
吕军  叶辉  段焰青  廖周瑜  母其爱 《生态学报》2010,30(8):2100-2104
蛀干危害是云南切梢小蠹致死云南松树的关键环节。通过控制云南切梢小蠹蛀干密度,对云南切梢小蠹在自然条件下蛀干行为与危害进行了首次探讨。结果表明,云南切梢小蠹蛀干密度与云南松存活率呈负相关,蛀干密度直接决定云南松死亡或存活。研究发现,蛀干密度115坑/m2是云南松树的最低致死密度阈值,云南松树在蛀干密度低于26.4坑/m2情况下存活,在26.4-115坑/m2有部分存活,超过115坑/m2以后将被害致死。云南切梢小蠹对树干攻击形成有卵和无卵两类坑道。形成无卵坑道的蛀干攻击可导致树势衰弱,形成有卵坑道的蛀干危害严重破坏了韧皮组织,是导致云南松死亡的直接原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号