共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The number and specificity of L antigen sites on low potassium type sheep red cells. 总被引:1,自引:0,他引:1
E M Tucker J C Ellory F B Wooding G Morgan J Herbert 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1976,194(1115):271-277
3.
Summary Binding of highly purified125I labeled M and L antibodies, both belonging to the immunoglobulin G class, was studied in high potassium (HK) and low potassium (LK) sheep red cells. Anti-M and anti-L bound specifically to M and L antigen positive HK and LK red cells, respectively. Nonspecific binding was higher for anti-L to HK cells than for anti-M to LK cells. Once bound, the M and L antibodies were capable of inducing complement dependent immune hemolysis. Only 75–100 and 500–750 molecules of anti-M and anti-L immunoglobulins were required to hemolyze 50% of HK (MM) and LK (LL) red cells, respectively, suggesting that the M and L antigens may be clustered on the surfaces of these cells. Equilibrium binding studies revealed that the maximum number of M sites is 3–6×103 in HK (MM) and 1.5–4×103 in LM (LM) cells, respectively. In comparison, the number of L antigens is slightly lower in LK cells, about 1.2–1.8×103 in LL and less in LM (LK) red cells. The number of M and L antigens, therefore, is more than an order of magnitude larger than that of the Na+K+ pumps measured previously in these cells by3H-ouabain binding, thus precluding a quantitative correlation between M and L antigens and the Na+K+ pumps different in the three genetic types of sheep red cells. The binding affinities of both anti-M and anti-L could not be described by a single equilibrium dissociation constant indicating heterogeneous antibody populations and/or variability in the antigenic sets of individual HK or LK cells. The pronounced heterogeneity of antigens and/or antibodies in both the M and L systems was reflected in the antibody association kinetics which also exhibited a remarkable temperature dependence. The data suggest that the correlation between the M and L antigens and the Na+K+ pump molecules is more complex than that in goat red cells previously reported by others. 相似文献
4.
Binding of highly purified 125I labeled M and L antibodies, both belonging to the immunoglobulin G class, was studied in high potassium (HK) and low potassium (LK) sheep red cells. Anti-M and anti-L bound specifically to M and L antigen positive HK and LK red cells, respectively. Nonspecific binding was higher for anti-L to HK cells than for anti-M to LK cells. Once bound, the M and L antibodies were capable of inducing complement dependent immune hemolysis. Only 75-100 and 500-750 molecules of anti-M and anti-L immunoglobulins were required to hemolyze 50% of HK (MM) and LK (LL) red cells, respectively, suggesting that the M and L antigens may be clustered on the surfaces of these cells. Equilibrium binding studies revealed that the maximum number of M sites is 3-6 x 10(3) in HK (MM) and 1.5-4 x 10(3) in LK (LM) cells, respectively. In comparison, the number of L antigens is slightly lower in LK cells, about 1.2-1.8 x 10(3) in LL and less in LM(LK) red cells. The number of M and L antigens, therefore, is more than an order of magnitude larger than that of the Na+K+ pumps measured previously in these cells by 3H-ouabain binding, thus precluding a quantitative correlation between M and L antigens and the Na+K+ pumps different in the three genetic types of sheep red cells. The binding affinities of both anti-M and anti-L could not be described by a single equilibrium dissociation constant indicating heterogeneous antibody populations and /or variability in the antigenic sets of individual HK or LK cells. The pronounced heterogeneity of antigens and/or antibodies in both the M and L systems was reflected in the antibody association kinetics, which also exhibited a remarkable temperature dependence. The data suggest that the correlation between the M and L antigens and the Na+K+ pump molecules is more complex than that in goat red cells previously reported by others. 相似文献
5.
The kinetics of active K+ transport were studied in immature red blood cells cells from high-K+ and low-K+ sheep, particularly with respect to the effects of varying intracellular K+ concentration, [K]i. Comparison was made with active transport, or pump, activity in mature high-K+ and low-K+ red cells. Reticulocytes from both types of sheep had much higher maximal active K+ influxes than did mature cells. In both types of reticulocytes, and in mature high-K+ cells as well, the pump was relatively insensitive to increasing [K]i. In contrast, intracellular K+ markedly inhibited the pump in mature low-K+ cells. Active K+ transport in low-K+ reticulocytes, however, as in mature low-K+ cells, is stimulated by specific isoimmune anti-L serum. Therefore the K+ pumps of high-K+ and low-K+ reticulocytes have similar kinetic properties. Maturation of the red cells, involving inactivation of most of the pump activity in both cell types, results in mature high-K+ and low-K+ cells with K+ pumps of very different kinetic characteristics. 相似文献
6.
P. K. Lauf B. A. Rasmusen P. G. Hoffman P. Cook M. L. Parmelee D. C. Tosteson 《The Journal of membrane biology》1970,3(1):1-13
Summary Anti-L serum prepared by immunization of a high-potassium-type (HK) (blood type MM) sheep with blood from a low-potassium-type (LK) (blood type ML) sheep contained an antibody which stimulated four- to sixfold K+-pump influx in LK (LL) sheep red cells. In long-termin vitro incubation experiments, LK sheep red cells sensitized with anti-L showed a net increase in K+ after two days of incubation at 37°C, whereas HK-nonimmune (NI)-serum-treated control cells lost K+. The antibody could be absorbed by LK (LL) sheep red cells but not by HK sheep red cells. Kinetic experiments showed that the concentration of external K+ ([K+]0) required to produce halfmaximum stimulation of the pump ([Na+]0=0, replaced by Mg++) was the same (0.25 mM) in L-antiserum-treated or untreated LK cells. LK cells with different [K+]i (Na+ replacement) were prepared by the p-chloromercuribenzene sulfonate (PCMBS) method. At [K+]0=5 mM, pump influx decreased as [K+]i increased from 1 to 70 mM in L-antiserum-treated LK cells, whereas LK cells treated with HK-NI-serum ceased to pump at [K+]i=35 mM. Exposure to anti-L serum produced an almost twofold increase in the number of pump sites of LK cells as measured by the binding of tritiated ouabain by LK sheep red cells. These findings indicate that the formation of a complex between the L-antigen and its antibody stimulates active transport in LK sheep red cells both by changing the kinetics of the pump and by increasing the number of pump sites. 相似文献
7.
8.
Passive potassium transport in LK sheep red cells. Modification by N- ethyl maleimide 总被引:2,自引:2,他引:2
下载免费PDF全文

《The Journal of general physiology》1983,81(6):861-885
Passive K transport, as modified by N-ethyl maleimide (NEM), was studied in erythrocytes of the low-K (LK) phenotype of sheep. Brief (5- min) treatment with NEM at less than 0.5 mM caused inhibition of passive K influx; NEM at concentrations greater than 0.5 mM caused stimulation of K influx. NEM had similar effects on K efflux. The treatments with NEM did not affect cell volumes (passive K transport in LK cells is sensitive to changes in cell volume). The stimulation of K transport by high [NEM] was also not a consequence of an effect on the metabolic state of the cells. Passive K transport in LK cells is dependent on Cl (it is inhibited in Cl-free media; it may be K/Cl cotransport). NEM had no effect on K influx in Cl-free (NO3- substituted) media. Pretreatment of the cells with anti-L antiserum (L antigen is found on LK cells and not on HK cells) prevented stimulation of K influx by NEM, but did not prevent inhibition. Therefore, NEM modifies the Cl-dependent K transport pathway at two separate sites, a low-affinity site, at which it stimulates, and a high-affinity site, at which it inhibits. Anti-L antibody prevents NEM's action, but only at the low-affinity site. 相似文献
9.
10.
The passive transport of potassium in rat liver cells 总被引:1,自引:0,他引:1
11.
The red blood cells of lambs, genotypically low potassium type, undergo a transition from high potassium to low potassium cell type from parturition onwards. This involves gradual changes in cell ion content, sodium pump activity, and ouabain binding. In the present study we investigated the properties of fetal red blood cells from 30 days prepartum using the chronically cannulated pregnant ewe preparation. We demonstrate that intracellular sodium increases and potassium decreases from -30 days onwards. Sodium pump activity monitored either by tracer potassium influx or ouabain binding is markedly higher in the early fetal samples examined and declines fourfold during the final month in utero. Unlike the maternal low potassium cells the early fetal red cells are refractory in terms of sodium pump stimulation by anti-L, the antibody in fact consistently inhibiting the pump. Finally, we have investigated the volume sensitivity and development of the ouabain-insensitive potassium fluxes in these cells and found that both fetal and maternal cells show a marked chloride-dependent, volume-sensitive passive potassium flux. We conclude that the decrease in active sodium transport between fetal red cells and adult low potassium cells is achieved partly by a reduction in the density of sodium pumps per cell, and then later by the introduction into the circulation of cells with Lp-antigen-modified sodium pumps. 相似文献
12.
Certain anti-sheep L antisera stimulated active potassium transport in cattle red cells. All cattle red cells tested (red cells from 21 Jersey cows) which had an internal K level of less than 70 mmol/1 were stimulated but those with more than 75 mmol/1 of K (red cells from 7 Jersey cows) were not stimulated. Cattle S-system reagents and isoimmune cattle sera produced by injecting red cells of low-potassium type into cows with cells of high-potassium type failed to stimulate active potassium transport in either cattle or sheep red cells. 相似文献
13.
14.
Young cells produced in LK sheep during rapid hematopoiesis after massive hemorrhage contain more K than the cells which are normally released into the circulation. The K content in these new cells falls to that characteristic of mature LK cells after a few days in the circulation. K transport properties in young and old cells before and after massive bleeding were studied. Young and old cells were separated by means of a density gradient centrifugation technique. Evidence showing that younger cells are found in the lower density fractions is presented. Active transport of K in the lightest fraction as measured by strophanthidin-sensitive influx was four to five times greater in red cells drawn 6 days after massive bleeding while the K leak as measured by strophanthidin-insensitive influx was only slightly larger. No change after bleeding was observed in older cells which had been present in the circulation prior to the hemorrhage. It is concluded that the high K content of young cells produced in LK sheep after bleeding is due to temporary retention of membrane K transport properties characteristic of HK cells. Thus, genetically determined modification of membrane transport properties has been shown to occur in nondividing circulating red cells. 相似文献
15.
Furosemide () inhibits a proportion of the total passive (ouabain-insensitive) K+ influx into primary chick heart cell cultures (85%), BC3H1 cells (75%), MDCK cells (40%) and HeLa cells (57%). This action of furosemide upon K+ influx is independent of ( inhibition since the furosemide-sensitive component of the K+ influx is identical in the presence and absence of ouabain (). For HeLa cells the passive, furosemide-sensitive component of K+ influx is markedly dependent upon the external K+, Na+ and Cl? content. Acetate, iodide and nitrate are ineffective as substitutes for Cl?, whereas Br? is partially effective. Partial Cl? replacement by NO3? gave an apparent affinity of 100 mM [Cl]. Na+ replacement by choline+ abolishes the furosemide-sensitive component, whereas Li+ replacement reduces this component by 48%. Partial Na+ replacement by choline+ gives an apparent affinity of 25 mM [Na+]. Variation in the external K+ content gives an affinity for the furosemide-sensitive component of approx. 1.0 mM. Furosemide inhibition of the passive K+ inflúx is of high affinity, half-maximal inhibition being observed at furosemide. Piretanide () and phloretin () inhibit the same component of passive K+ influx as furosemide; ethacrynic acid and amiloride () partially so. The stilbene, SITS (), was ineffective as an inhibitor of the furosemide-sensitive component. 相似文献
16.
L-antigen and active potassium transport in HK and LK red cells of Barbary sheep (Ammotragus lervia)
J M Stein E M Tucker J C Ellory L Kilgour 《Comparative biochemistry and physiology. A, Comparative physiology》1987,87(3):711-716
1. The potassium concentration in red cells of 21 Barbary sheep showed a bimodal distribution, with five animals of LK type (K+ conc. 30-45 mM) and 16 of HK type (K+ conc. 80-95 mM). 2. Evidence is presented that both Lp and Ll antigens are present on LK Barbary sheep red cells. 3. Active K+ transport in LK Barbary sheep red cells was stimulated 3-5 fold by sheep and goat anti-L. 4. Active K+ transport in HK Barbary sheep red cells was higher than in LK red cells. Five out of six HK animals tested showed no stimulation of active K+ transport with anti-L. One HK animal (2BA2) showed some stimulation of active K+ transport, and also absorbed some anti-L from antisera, suggesting that Lp antigen is present on these red cells. 5. Ouabain-sensitive ATPase in membranes from HK and LK Barbary sheep red cells showed kinetics characteristic of HK and LK membranes of domestic goats and sheep; the ATPase of LK Barbary sheep membranes sensitized with anti-L was stimulated 2-fold due to an alteration in the internal sodium and potassium affinities in favour of sodium. 相似文献
17.
1. When dog semen is stored at 5 degrees for 24hr., K(+) is lost from the spermatozoa and Na(+) accumulates in the cells. 2. If at the end of the cold-storage period the semen is incubated at 37 degrees in the presence of added glucose there is a rapid uptake of K(+) and extrusion of Na(+) from the spermatozoa, the intracellular K(+) reaching a maximum within 30min. 3. When the semen is incubated at 20 degrees after cold storage there is an uptake of K(+) by the spermatozoa over 3hr. but no change in intracellular Na(+) concentration. 4. The extrusion of Na(+) and uptake of K(+) by dog spermatozoa has been shown to be inhibited by fluoride, iodoacetate, 2,4-dinitrophenol, and cetyltrimethylammonium bromide. 5. Uptake of K(+) is inhibited by ouabain and half maximum inhibition is obtained with a concentration of 50mmum. There is a slight stimulation of K(+) uptake in the presence of ouabain at about 0.3% of the concentration required for half maximum inhibition. 相似文献
18.
19.
After incubation in isotonic KCl, dog red blood cells can be separated by centrifugation into subgroups which assume different cell volumes and possess different transport characteristics. Those red cells which swell in isotonic KCl exhibit a higher permeability to K and possess a greater volume dependence for transport of K than those red cells which shrink. A high Na permeability characterizes cells which shrink in isotonic KCl and these cells exhibit a larger volume-dependent Na flux than those red cells which swell. These two subgroups of red cells do not seem to represent two cell populations of different age. The results indicate that the population of normal cells is evidently heterogeneous in that the volume-dependent changes in Na and K permeability are distributed between differnt cell types rather than representing a single cell type which reciprocally changes its selectivity to Na and K. 相似文献
20.
Active transport of lead by human red blood cells 总被引:1,自引:0,他引:1
T J Simons 《FEBS letters》1984,172(2):250-254
Human red cells suspended in lead-citrate buffers (2.6 microM Pb2+) take up much less Pb than predicted from studies of equilibrium binding of Pb to haemolysates. Pb uptake is increased by ATP depletion, or by loading at 0 degrees C. Tracer studies with 203Pb indicate that the low uptake at 37 degrees C in the presence of substrate is not due to membrane impermeability to Pb. Cold-loaded cells extrude Pb against a concentration gradient at 37 degrees C when glucose is present. These results suggest that the cellular loading of Pb is dependent on the balance between an inward leak and an outward pump. The extrusion of Pb from the cells is possibly brought by the Ca pump. 相似文献