首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant hormones are a group of chemically diverse molecules that control virtually all aspects of plant development. Classical plant hormones were identified many decades ago in physiology studies that addressed plant growth regulation. In recent years, biochemical and genetic approaches led to the identification of many molecular components that mediate hormone activity, such as hormone receptors and hormone-regulated genes. This has greatly contributed to the understanding of the mechanisms underlying hormone activity and highlighted the intricate crosstalk and integration of hormone signalling and developmental pathways. Here we review and discuss recent findings on how hormones regulate the activity of shoot and root apical meristems.  相似文献   

2.
Abstract: Post-embryonic development is controlled by two types of meristems: apical and lateral. There has been considerable progress recently in understanding the function of root and shoot apical meristems at the molecular level. Knowledge of analogous processes in the lateral, or secondary, meristems, i.e. the vascular cambium or cork cambium, is, however, rudimentary. This is despite the fact that much of the diversity in the plant kingdom is based on the differential functions of these meristems, emphasizing the importance of lateral meristems in the development of different plant forms. The vascular cambium is particularly important for woody plants, but it also plays an important role during the development of various herbaceous species, such as Arabidopsis thaliana. In this review, we focus on the two basic functions of cambial activity: cell proliferation and pattern formation.  相似文献   

3.
The phytohormones auxin and cytokinin interact to regulate many plant growth and developmental processes. Elements involved in the biosynthesis, inactivation, transport, perception, and signaling of these hormones have been elucidated, revealing the variety of mechanisms by which signal output from these pathways can be regulated. Recent studies shed light on how these hormones interact with each other to promote and maintain plant growth and development. In this review, we focus on the interaction of auxin and cytokinin in several developmental contexts, including its role in regulating apical meristems, the patterning of the root, the development of the gynoecium and female gametophyte, and organogenesis and phyllotaxy in the shoot.  相似文献   

4.
The developmental anatomy of the shoot apex, rhizophore and root ofSelaginella uncinata was examined by the semi-thin section method. The shoot apex has a single, lens-shaped apical cell with two cutting faces. Rhizophore primordia are initiated exogenously at the branching point of the second youngest lateral shoot. The rhizophore apex has a tetrahedral apical cell with three cutting faces. A pair of root primordia is initiated endogenously from inner cells of the rhizophore apex, after the rhizophore apical cell becomes unidentifiable losing its activity, and subsequently a root cap is formed from the distal face of the root apical cell. During the course of successive root branching the apical cell in an original root apical meristem becomes unidentifiable and then a new apical cell is initiated in each of the bifurcated root apical meristems. The root branching mode seems to be equivalent to the described dichotomous branching mode of fern shoots. Our results demonstrate a distinct morphogenetical difference between the rhizophore and the root, and confirm the exogenous origin of the rhizophore, as described for other species ofSelaginella. This evidence indicates that the rhizophore is not an aerial root but a leafless, root-producing axial organ.  相似文献   

5.
6.
7.
8.
Phosphoprotein-binding domains are found in many different proteins and specify protein-protein interactions critical for signal transduction pathways. Forkhead-associated (FHA) domains bind phosphothreonine and control many aspects of cell proliferation in yeast (Saccharomyces cerevisiae) and animal cells. The Arabidopsis (Arabidopsis thaliana) protein kinase-associated protein phosphatase includes a FHA domain that mediates interactions with receptor-like kinases, which in turn regulate a variety of signaling pathways involved in plant growth and pathogen responses. Screens for insertional mutations in other Arabidopsis FHA domain-containing genes identified a mutant with pleiotropic defects. dawdle (ddl) plants are developmentally delayed, produce defective roots, shoots, and flowers, and have reduced seed set. DDL is expressed in the root and shoot meristems and the reduced size of the root apical meristem in ddl plants suggests a role early in organ development.  相似文献   

9.
Recent research on the developmental anatomy and morphology of the fern sporophyte is reviewed. Detailed histological and experimental studies of the organization of the fern shoot apical meristem have reconfirmed the recently controversial role of the shoot apical cell as the single apical initial of the meristem. The shoot apical meristem is nevertheless an anatomically and functionally complex structure with a strongly zoned cytohistological organization. Fern shoot apex organization can be compared with that of seed plants. The control of leaf initiation and phyllotaxy remains poorly understood. Studies differ as to whether leaf initiation in ferns involves one leaf mother cell or a multicellular region of the shoot apex. The concept of non-appendicular fronds is refuted for living ferns. The later developmental changes in the determinate leaf apical and marginal meristems of the leaf primordium form an area that is still largely unexplored but could be investigated by methods similar to those used to study shoot and root apices. Branching in ferns is morphologiclaly and developmentally diverse. There is apparently more than one developmental mode of dichotomous branching, and several modes of lateral bud formation have been described, including the phyllogenous initiation of branches at the base of leaf primordia. Developmental changes in bud meristems related to apical dominance, inhibition, and bud activation is another major area for continued study. The traditional concept of the role of the root apical cell has been reestablished by studies similar to those made of the shoot apex. Detailed ultrastructural investigations of the root ofAzolla have given a sophisticated new picture of developmental processes in that organ. Fern roots show remarkably precise patterns of histogenesis in relation to apical segmentation. The formation of secondary vascular tissue inBotrychium suggests that the Ophioglossales may be related to the seed plants. The causal relationship of leaf (and branch and root) formation and the initiation of vascular tissue in the shoot needs more study. Although still poorly understood, protoxylem systems in ferns are variable and may have morphological and systematic significance. Recent investigations of hydraulic conductance in fern stems have found possible correlations of conductance levels with growth forms. The anatomical diversity of ferns makes comparative functional anatomy a promising field for future study.  相似文献   

10.
In higher plants, the root-shoot axis established during embryogenesis is extended and modified by the development of primary and lateral apical meristems. While the structure of several shoot apical meristems has been deduced by combining histological studies with clonal analysis, the application of this approach to root apical meristems has been limited by a lack of visible genetic markers. We have tested the feasibility of using a synthetic gene consisting of the maize transposable elementActivator (Ac) inserted between a 35S CaMV promoter and the coding region of a -glucuronidase (GUS) reporter gene as a means of marking cell lineages in roots. The GUS gene was activated in individual cells byAc excision, and the resulting sectors of GUS-expressing cells were detected with the histochemical stain X-Gluc. Sectors in lateral roots originated from bothAc excision in meristematic cells and from parent root sectors that bisect the founder cell population for the lateral root initial. Analysis of root tip sectors confirmed that the root cap, and root proper have separate initials. Large sectors in the body of the lateral root encompassed both cortex and vascular tissues. The number of primary initial cells predicted from the size and arrangement of the sectors observed ranged from two to four and appeared to vary between roots. We conclude that transposon-based clonal analysis using GUS expression as a genetic marker is an effective approach for deducing the functional organization of root apical meristems.  相似文献   

11.
The C4 protein of beet curly top virus [BCTV-B (US:Log:76)] induces hyperplasia in infected phloem tissue and tumorigenic growths in transgenic plants. The protein offers an excellent model for studying cell cycle control, cell differentiation, and plant development. To investigate the role of the C4 protein in plant development, transgenic Arabidopsis thaliana plants were generated in which the C4 transgene was expressed under the control of an inducible promoter. A detailed analysis of the developmental changes that occur in cotyledons and hypocotyls of seedlings expressing the C4 transgene showed extensive cell division in all tissues types examined, radically altered tissue layer organization, and the absence of a clearly defined vascular system. Induced seedlings failed to develop true leaves, lateral roots, and shoot and root apical meristems, as well as vascular tissue. Specialized epidermis structures, such as stomata and root hairs, were either absent or developmentally impaired in seedlings that expressed C4 protein. Exogenous application of brassinosteroid and abscisic acid weakly rescued the C4-induced phenotype, while induced seedlings were hypersensitive to gibberellic acid and kinetin. These results indicate that ectopic expression of the BCTV C4 protein in A. thaliana drastically alters plant development, possibly through the disruption of multiple hormonal pathways.  相似文献   

12.
Auxin: A major regulator of organogenesis   总被引:2,自引:0,他引:2  
Plant development is characterized by the continuous initiation of tissues and organs. The meristems, which are small stem cell populations, are involved in this process. The shoot apical meristem produces lateral organs at its flanks and generates the growing stem. These lateral organs are arranged in a stereotyped pattern called phyllotaxis. Organ initiation in the peripheral zone of the meristem involves accumulation of the plant hormone auxin. Auxin is transported in a polar way by influx and efflux carriers located at cell membranes. Polar localization of the PIN1 efflux carrier in meristematic cells generates auxin concentration gradients and PIN1 localization depends, in turn, on auxin gradients: this feedback loop generates a dynamic auxin distribution which controls phyllotaxis. Furthermore, PIN-dependent local auxin gradients represent a common module for organ initiation, in the shoot and in the root.  相似文献   

13.
The variability of shoot architecture in plants is striking and one of the most extreme examples of adaptive growth in higher organisms. Mediated by the differential activity of apical and lateral meristems, flexibility in stem growth essentially contributes to this variability. In spite of this importance, the regulation of major events in stem development is largely unexplored. Recently, however, novel approaches exploiting knowledge from root and leaf development are starting to shed light on molecular mechanisms that regulate this essential plant organ. In this review, we summarize our understanding of initial patterning events in stems, discuss prerequisites for the initiation of lateral stem growth and highlight the burning questions in this context.  相似文献   

14.
Stem cell function during plant vascular development   总被引:1,自引:0,他引:1  
While many regulatory mechanisms controlling the development and function of root and shoot apical meristems have been revealed, our knowledge of similar processes in lateral meristems, including the vascular cambium, is still limited. Our understanding of even the anatomy and development of lateral meristems (procambium or vascular cambium) is still relatively incomplete, let alone their genetic regulation. Research into this particular tissue type has been mostly hindered by a lack of suitable molecular markers, as well as the fact that thus far very few mutants affecting plant secondary development have been described. The development of suitable molecular markers is a high priority in order to help define the anatomy, especially the location and identity of cambial stem cells and the developmental phases and molecular regulatory mechanisms of the cambial zone. To date, most of the advances have been obtained by studying the role of the major plant hormones in vascular development. Thus far auxin, cytokinin, gibberellin and ethylene have been implicated in regulating the maintenance and activity of cambial stem cells; the most logical question in research would be how these hormones interact during the various phases of cambial development.  相似文献   

15.
The shoot and root apical meristems (SAM and RAM, respectively) of plants serve both as sites of cell division and as stem cell niches. The SAM is also responsible for the initiation of new leaves, whereas the analogous process of lateral root initiation occurs in the pericycle, a specialized layer of cells that retains organogenic potential within an otherwise non-dividing region of the root. A picture is emerging of how cell division, growth, and differentiation are coordinated in the meristems and lateral organ primordia of plants. This is starting to reveal striking parallels between the control of stem cell maintenance in both shoots and roots, and to provide information on how signalling from developmental processes and the environment impact on cell behaviour within meristems.  相似文献   

16.
Root system development is an important agronomic trait. The right architecture in a given environment allows plants to survive periods of water of nutrient deficit, and compete effectively for resources. Root systems also provide an optimal system for studying developmental plasticity, a characteristic feature of plant growth. This review proposes a framework for describing the pathways regulating the development of complex structures such as root systems: intrinsic pathways determine the characteristic architecture of the root system in a given plant species, and define the limits for plasticity in that species. Response pathways co-ordinate environmental cues with development by modulating intrinsic pathways. The current literature describing the regulation of root system development is summarized here within this framework. Regulatory pathways are also organized based on their specific developmental effect in the root system. All the pathways affect lateral root formation, but some specifically target initiation of the lateral root, while others target the development and activation of the lateral root primordium, or the elongation of the lateral root. Finally, we discuss emerging approaches for understanding the regulation of root system architecture.  相似文献   

17.
18.
A major transition in land plant evolution was from growth in water to growth on land. This transition necessitated major morphological innovations that were accompanied by the development of three-dimensional apical growth. In extant land plants, shoot growth occurs from groups of cells at the apex known as meristems. In different land plant lineages, meristems function in different ways to produce distinct plant morphologies, yet our understanding of the developmental basis of meristem function is limited to the most recently diverged angiosperms. To redress this balance, we have examined meristem function in the lycophyte Selaginella kraussiana. Using a clonal analysis, we show that S. kraussiana shoots are derived from the activity of two short-lived apical initials that facilitate the formation of four axes of symmetry in the shoot. Leaves are initiated from just two epidermal cells, and the mediolateral leaf axis is the first to be established. This pattern of development differs from that seen in flowering plants. These differences are discussed in the context of the development and evolution of diverse land plant forms.  相似文献   

19.
Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development   总被引:1,自引:0,他引:1  
Hawker NP  Bowman JL 《Plant physiology》2004,135(4):2261-2270
Meristems within the plant body differ in their structure and the patterns and identities of organs they produce. Despite these differences, it is becoming apparent that shoot and root apical and vascular meristems share significant gene expression patterns. Class III HD-Zip genes are required for the formation of a functional shoot apical meristem. In addition, Class III HD-Zip and KANADI genes function in patterning lateral organs and vascular bundles produced from the shoot apical and vascular meristems, respectively. We utilize both gain- and loss-of-function mutants and gene expression patterns to analyze the function of Class III HD-Zip and KANADI genes in Arabidopsis roots. Here we show that both Class III HD-Zip and KANADI genes play roles in the ontogeny of lateral roots and suggest that Class III HD-Zip gene activity is required for meristematic activity in the pericycle analogous to its requirement in the shoot apical meristem.  相似文献   

20.
The shoot and root apical meristems (SAMs and RAMs, respectively) of higher plants are mechanistically and structurally similar. This has led previously to the suggestion that the SAM and RAM represent modifications of a fundamentally homologous plan of organization. Despite recent interest in plant development, especially in the areas of meristem regulation, genes specifically required for the function of both the SAM and RAM have not yet been identified. Here, we report on a novel gene, Defective embryo and meristems (Dem), of tomato. This gene is required for the correct organization of shoot apical tissues of developing embryos, SAM development, and correct cell division patterns and meristem maintenance in roots. Dem was cloned using transposon tagging and shown to encode a novel protein of 72 kD with significant homology to YNV2, a protein of unknown function of Saccharomyces cerevisiae. Dem is expressed in root and shoot meristems and organ primordia but not in callus. The expression pattern of Dem mRNA in combination with the dem mutant phenotype suggests that Dem plays an important role within apical meristems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号