首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using a T, B, or NK cell-deficient mouse strain (recombinase-activating gene (RAG)-1(-/-)/common cytokine receptor gamma-chain (gamma(C)R)), and T and B cell and IFN-gamma-deficient (RAG-1(-/-)/IFN-gamma(-/-)) mice, we have studied the generation of immunity against infection by Chlamydia pneumoniae. We found that IFN-gamma secreted by innate-cell populations protect against C. pneumoniae infection. However, NK cells were not needed for such IFN-gamma-dependent innate immune protection. Inoculation of wild type, but not IFN-gamma(-/-) bone marrow-derived macrophages protected RAG-1(-/-)/IFN-gamma(-/-) mice against C. pneumoniae infection. In line, pulmonary macrophages from RAG-1(-/-) C. pneumoniae-infected mice expressed IFN-gamma mRNA. Reconstitution of RAG-1(-/-)/gamma(c)R(-/-) or RAG-1(-/-)/IFN-gamma(-/-) mice with CD4(+) or CD8(+) cells by i.v. transfer of FACS sorted wild type spleen cells (SC) increased resistance to C. pneumoniae infection. On the contrary, no protection was observed upon transfer of IFN-gamma(-/-) CD4(+) or IFN-gamma(-/-) CD8(+) SC. T cell-dependent protection against C. pneumoniae was weaker when IFN-gammaR(-/-) CD4(+) or IFN-gammaR(-/-) CD8(+) SC were inoculated into RAG-1(-/-)/IFN-gamma(-/-) mice. Thus both nonlymphoid and T cell-derived IFN-gamma can play a central and complementary role in protection against C. pneumoniae. IFN-gamma secreted by nonlymphoid cells was not required for T cell-mediated protection against C. pneumoniae; however, IFN-gamma regulated T cell protective functions.  相似文献   

2.
Interleukin-15 (IL-15), natural killer (NK) cells, and NK T (NKT) cells, components of the innate immune system, are known to contribute to defense against pathogens, including viruses. Here we report that IL-15(-/-) (NK(-) and NKT(-/+)) mice and RAG-2(-/-)/gamma(c)(-/-) (NK(-) and NKT(-)) mice that lack all lymphoid cells were very susceptible to vaginal infection with a low dose of herpes simplex virus type 2 (HSV-2). IL-15(-/-) and RAG-2(-/-)/gamma(c)(-/-) mice were 100-fold more susceptible and RAG-2(-/-), CD-1(-/-) (NKT(-)), and gamma interferon (IFN-gamma)(-/-) mice were 10-fold more susceptible to vaginal HSV-2 infection than control C57BL/6 mice. NK and/or NKT cells were the early source of IFN-gamma in vaginal secretions following genital HSV-2 infection. This study demonstrates that IL-15 and NK-NKT cells are critical for innate protection against genital HSV-2.  相似文献   

3.
CD4(+) T cells produce IFN-gamma contributing to corneal perforation in C57BL/6 (B6) mice after Pseudomonas aeruginosa infection. To determine the role of NK and NKT cells, infected corneas of B6 mice were dual immunolabeled. Initially, more NKT than NK cells were detected, but as disease progressed, NK cells increased, while NKT cells decreased. Therefore, B6 mice were depleted of NK/NKT cells with anti-asialo GM1 or anti-NK1.1 Ab. Either treatment accelerated time to perforation, increased bacterial load and polymorphonuclear neutrophils, but decreased IFN-gamma and IL-12p40 mRNA expression vs controls. Next, RAG-1 knockout (-/-; no T/NKT cells), B6.TCR Jalpha281(-/-) (NKT cell deficient), alpha-galactosylceramide (alphaGalCer) (anergized NKT cells) injected and IL-12p40(-/-) vs B6 controls were tested. IFN-gamma mRNA was undetectable in RAG-1(-/-)- and alphaGalCer-treated mice at 5 h and was significantly reduced vs controls at 1 day postinfection. It also was reduced significantly in B6.TCR Jalpha281(-/-), alphaGalCer-treated, and IL-12p40(-/-) (activated CD4(+) T cells also reduced) vs control mice at 5 days postinfection. In vitro studies tested whether endotoxin (LPS) stimulated Langerhans cells and macrophages (Mphi; from B6 mice) provided signals to activate NKT cells. LPS up-regulated mRNA expression for IL-12p40, costimulatory molecules CD80 and CD86, NF-kappaB, and CD1d, and addition of rIFN-gamma potentiated Mphi CD1d levels. Together, these data suggest that Langerhans cell/Mphi recognition of microbial LPS regulates IL-12p40 (and CD1d) driven IFN-gamma production by NKT cells, that IFN-gamma is required to optimally activate NK cells to produce IFN-gamma, and that depletion of both NKT/NK cells results in earlier corneal perforation.  相似文献   

4.
Several reports have indicated that cell lineages apart from NK and T cells can also express IFN-gamma. However, the biological relevance of this finding is uncertain. We show in this study that bone marrow-derived macrophages (BMMs) express IFN-gamma at the mRNA and protein level early after infection with Chlamydia pneumoniae. Increased IFN-gamma mRNA accumulation by infected BMMs is early, transient, and requires both bacterial and host protein synthesis. The induction of IFN-gamma mRNA levels is independent of IL-12 and was dramatically enhanced in IL-10(-/-) BMMs. Such IL-10(-/-) BMMs contained less bacteria than the wild-type controls, whereas IFN-gammaR(-/-) BMMs showed increased C. pneumoniae load. Inducible NO synthase (iNOS) also participates in the control of bacterial load, as shown by the enhanced numbers of C. pneumoniae in iNOS(-/-) BMMs. However, the increased accumulation of iNOS mRNA and NO in C. pneumoniae-infected BMMs depended on the presence of IFN-alphabeta, but was independent of IFN-gamma. Interestingly, IFN-alphabeta are also required for increased IFN-gamma mRNA accumulation in C. pneumoniae-infected BMMs. Accordingly, IFN-alphabetaR(-/-) BMMs showed higher levels of C. pneumoniae than wild-type BMMs. Our findings unravel an autocrine/paracrine macrophage activation pathway by showing an IFN-alphabeta-dependent IFN-gamma and iNOS induction in response to infection, which protects macrophages against intracellular bacterial growth.  相似文献   

5.
Suppressor of cytokine signaling 1 (SOCS1) plays a major role in the inhibition of STAT1-mediated responses. STAT1-dependent responses are critical for resistance against infection with Chlamydia pneumoniae. We studied the regulation of expression of SOCS1 and SOCS3, and the role of SOCS1 during infection with C. pneumoniae in mice. Bone marrow-derived macrophages (BMM) and dendritic cells in vitro or lungs in vivo all showed enhanced STAT1-dependent SOCS1 mRNA accumulation after infection with C. pneumoniae. Infection-increased SOCS1 mRNA levels were dependent on IFN-alphabeta but not on IFN-gamma. T or B cells were not required for SOCS1 mRNA accumulation in vivo. Infection-induced STAT1-phosphorylation occurred more rapidly in SOCS1(-/-) BMM. In agreement, expression of IFN-gamma responsive genes, but not IL-1beta, IL-6, or TNF-alpha were relatively increased in C. pneumoniae-infected SOCS1(-/-) BMM. Surprisingly, C. pneumoniae infection-induced IFN-alpha, IFN-beta, and IFN-gamma expression in BMM were attenuated by SOCS1. C. pneumoniae infection of RAG1(-/-)/SOCS1(-/-) mice induced a rapid lethal inflammation, accompanied by diminished pulmonary bacterial load and increased levels of iNOS and IDO but not IL-1beta, IL-6, or TNF-alpha mRNA. In summary, C. pneumoniae infection induces a STAT1, IFN-alphabeta-dependent and IFN-gamma independent SOCS1 mRNA accumulation. Presence of SOCS1 controls the infection-induced lethal inflammatory disease but impairs the bacterial control.  相似文献   

6.
7.
Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/-) mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/-) mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.  相似文献   

8.
Both peptidoglycan and muropeptides potently modulate inflammatory and innate immune responses. The secreted Listeria monocytogenes p60 autolysin digests peptidoglycan and promotes bacterial infection in vivo. Here, we report that p60 contributes to bacterial subversion of NK cell activation and innate IFN-gamma production. L. monocytogenes deficient for p60 (Deltap60) competed well for expansion in mice doubly deficient for IFNAR1 and IFN-gammaR1 or singly deficient for IFN-gammaR1, but not in wild-type, IFNAR1(-/-), or TLR2(-/-) mice. The restored competitiveness of p60-deficient bacteria suggested a specific role for p60 in bacterial subversion of IFN-gamma-mediated immune responses, since in vivo expansion of three other mutant L. monocytogenes strains (DeltaActA, DeltaNamA, and DeltaPlcB) was not complemented in IFN-gammaR1(-/-) mice. Bacterial expression of p60 was not required to induce socs1, socs3, and il10 expression in infected mouse bone marrow macrophages but did correlate with enhanced production of IL-6, IL-12p70, and most strikingly IFN-gamma. The primary source of p60-dependent innate IFN-gamma was NK cells, whereas bacterial p60 expression did not significantly alter innate IFN-gamma production by T cells. The mechanism for p60-dependent NK cell stimulation was also indirect, given that treatment with purified p60 protein failed to directly activate NK cells for IFN-gamma production. These data suggest that p60 may act on infected cells to indirectly enhance NK cell activation and increase innate IFN-gamma production, which presumably promotes early bacterial expansion through its immunoregulatory effects on bystander cells. Thus, the simultaneous induction of IFN-gamma production and factors that inhibit IFN-gamma signaling may be a common strategy for misdirection of early antibacterial immunity.  相似文献   

9.
Neutrophils are essential players in innate immune responses to bacterial infection. Despite the striking resistance of Legionella pneumophila (Lpn) to bactericidal neutrophil function, neutrophil granulocytes are important effectors in the resolution of legionellosis. Indeed, mice depleted of neutrophils were unable to clear Lpn due to a lack of the critical cytokine IFN-gamma, which is produced by NK cells. We demonstrate that this can be ascribed to a previously unappreciated role of neutrophils as major NK cell activators. In response to Lpn infection, neutrophils activate caspase-1 and produce mature IL-18, which is indispensable for the activation of NK cells. Furthermore, we show that the IL-12p70 response in Lpn-infected neutropenic mice is also severely reduced and that the Lpn-induced IFN-gamma production by NK cells is strictly dependent on IL-12. However, since dendritic cells, and not neutrophils, are the source of Lpn-induced IL-12, its paucity is a consequence of the absence of IFN-gamma produced by NK cells rather than the absence of neutrophils per se. Therefore, neutrophil-derived IL-18, in combination with dendritic cell-produced IL-12, triggers IFN-gamma synthesis in NK cells in Lpn-infected mice. We propose a novel central role for neutrophils as essential IL-18 producers and hence NK cell "helpers" in bacterial infection.  相似文献   

10.
11.
12.
In visceral leishmaniasis, chemotherapy probably seldom eradicates all parasites in tissue macrophages; nevertheless, most T cell-intact patients show long-lasting clinical cure after treatment despite residual intracellular infection. To characterize prevention of posttreatment relapse, amphotericin B was used to kill approximately 90-95% of Leishmania donovani in livers of mice deficient in mechanisms of acquired antileishmanial resistance. Recrudescence subsequently developed 1) in animals deficient in both CD4 and CD8 T cells as well as CD40L-mediated T cell costimulation, but not in a) CD4 or CD8 cells alone, b) NK cell lytic activity, or c) ICAM-1-recruited monocytes; and 2) in mice deficient in IFN-gamma, but not in the IFN-gamma-inducing cytokines, a) IL-12, b) IL-12 and IL-23, or c) IL-18. Posttreatment recrudescence also did not develop in animals deficient in macrophage phagocyte NADPH oxidase (phox) or inducible NO synthase (iNOS) alone or, surprisingly, in those deficient in both phox and iNOS. Therefore, regulation of the intracellular replication of residual Leishmania donovani that escape chemotherapy evolves to a host mechanism distinguishable from initial acquired resistance at the T cell, cytokine, and macrophage levels. Posttreatment, either CD8 or CD4 cells can direct the response, IL-12 is not required, and iNOS and phox, the activated macrophage's primary IFN-gamma-inducible leishmanicidal pathways, both become dispensable.  相似文献   

13.
Infection with Chlamydia pneumoniae is a common cause of acute respiratory disease in man and is also associated with atherosclerotic cardiovascular disorder. Herein, we have compared bacterial load and immune parameters of C. pneumoniae-infected mice genomically lacking T cell coreceptors, cytokine receptors, or cytotoxic effector molecules. A protective role for CD8+ cells is shown by the enhanced severity of infection of CD8-/- or TAP-1-/-/beta2-microglobulin -/- mice. CD8+ cells hindered a parasite growth-promoting role of CD4+ T cells, as indicated by the higher sensitivity to early infection of CD8-/- than CD4-/-/CD8-/- mice, which was further confirmed in experiments in which SCID mice were reconstituted with either CD4+ or CD4+ plus CD8+ T cells. Interestingly, CD4+ T cells played a dual role, detrimental early (14 and 24 days) after infection but protective at later time points (60 days after infection). The CD8+ T cell protection was perforin independent. The early deleterious role of CD4+ in the absence of CD8+ T cells was associated with enhanced IL-4 and IL-10 mRNA levels and delayed IFN-gamma mRNA accumulation in lungs. In line with this, IFN-gammaR-/- (but not TNFRp55 -/-) mice showed dramatically increased susceptibility to C. pneumoniae, linked to reduced inducible nitric oxide synthase (iNOS) mRNA accumulation, but not to diminished levels of specific Abs. The increased susceptibility of iNOS-/- mice indicates a protective role for iNOS activity during infection with C. pneumoniae. The higher sensitivity of IFN-gammaR-/- mice to C. pneumoniae compared with that of SCID or recombination-activating gene-1-/- mice suggested a relevant protective role of IFN-gamma-dependent innate mechanisms of protection.  相似文献   

14.
Attenuated Salmonella induce immunosuppressive, microbicidal and tumoricidal macrophages in mice. All three effects are mediated by activated macrophages producing nitric oxide (NO). NO is induced by the innate immune response pathway involving IL-12, NK cells and IFN-gamma in response to infection. NO has beneficial and detrimental effects on the host.  相似文献   

15.
NK dendritic cells (NKDC) are recently described immunologic cells that possess both lytic and Ag-presenting function and produce prolific quantities of IFN-gamma. The role of NKDC in innate immunity to bacterial infection is unknown. Because IFN-gamma is important in the immune response to Listeria monocytogenes (LM), we hypothesized that NKDC play a critical role during LM infection in mice. We found that LM increased the frequency and activation state of NKDC in vivo. Using in vivo intracellular cytokine analysis, we demonstrated that NKDC are a major source of early IFN-gamma during infection with LM. Adoptive transfer of wild-type NKDC into IFN-gamma-deficient recipients that were subsequently infected with LM decreased bacterial burden in the liver and spleen and prolonged survival. In contrast, NK cells were depleted early during LM infection, produced less IFN-gamma, and conferred less protection upon adoptive transfer into IFN-gamma-deficient mice. In vitro, LM induction of IFN-gamma secretion by NKDC depended on TLR9, in addition to IL-18 and IL-12. Our study establishes NKDC as innate immune responders to bacterial infection by virtue of their ability to secrete IFN-gamma.  相似文献   

16.
The development of type 1 diabetes in animal models is T cell and macrophage dependent. Islet inflammation begins as peripheral benign Th2 type insulitis and progresses to destructive Th1 type insulitis, which is driven by the innate immune system via secretion of IL-12 and IL-18. We now report that daily application of IL-18 to diabetes-prone female nonobese diabetic mice, starting at 10 wk of age, suppresses diabetes development (p < 0.001, 65% in sham-treated animals vs 33% in IL-18-treated animals by 140 days of age). In IL-18-treated animals, we detected significantly lower intraislet infiltration (p < 0.05) and concomitantly an impaired progression from Th2 insulitis to Th1-dependent insulitis, as evidenced from IFN-gamma and IL-10 mRNA levels in tissue. The deficient progression was probably due to lesser mRNA expression of the Th1 driving cytokines IL-12 and IL-18 by the innate immune system (p < 0.05). Furthermore, the mRNA expression of inducible NO synthase, a marker of destructive insulitis, was also not up-regulated in the IL-18-treated group. IL-18 did not exert its effect at the levels of islet cells. Cultivation of islets with IL-18 affected NO production or mitochondrial activity and did not protect from the toxicity mediated by IL-1beta, TNF-alpha, and IFN-gamma. In conclusion, we show for the first time that administration of IL-18, a mediator of the innate immune system, suppresses autoimmune diabetes in nonobese diabetic mice by targeting the Th1/Th2 balance of inflammatory immune reactivity in the pancreas.  相似文献   

17.
Macrophages are now well recognized to have a critical role in both innate and acquired immunity. The sentinel macrophage function is highly regulated and serves to allow for intrinsic plasticity of the innate immune responses to potential environmental signals. However, the mechanisms underlying the dynamic properties of the cellular arm of innate immunity are poorly understood. Therefore, we have conducted a series of in vitro studies to evaluate the contribution of immunoregulatory cytokines, such as IFN-gamma, IL-10, and IL-12, in modulation of macrophage responses. We found that macrophages from IFN-gamma knockout (IFN-gamma(-/-)) mice exhibit only marginal LPS-induced TNF-alpha, IL-12, and NO responses, all of which can be fully restored in the presence of rIFN-gamma. Pretreatment with substimulatory LPS concentrations led to reprogramming of IFN-gamma(-/-) macrophage responses in a dose-dependent manner that manifested by an increased TNF-alpha and IL-12, but not NO, production upon the subsequent LPS challenge. These reprogramming effects were substantially attenuated and profoundly enhanced in macrophages from IL-12(-/-) and IL-10(-/-) mice, respectively, as compared with those modulated in macrophages from the congenic wild-type mice. LPS-dependent reprogramming was also fully reproduced in macrophages isolated from SCID mice after immunodepletion of NK cells. Our data strongly imply that cytokine (TNF-alpha and IL-12), but not NO, responses in macrophages may, at least in part, be governed by an autocrine IFN-gamma-independent regulatory mechanism reciprocally controlled by IL-10 and IL-12. This mechanism may serve as an alternative/coherent pathway to the canonical IFN-gamma-dependent induction of antimicrobial and tumoricidal activity in macrophages.  相似文献   

18.
STAT1 mediates signaling in response to IFN-alpha, -beta, and -gamma, cytokines required for protective immunity against several viral, bacterial, and eukaryotic pathogens. The protective role of STAT1 in the control of intranasal infection with the obligate intracellular bacterium Chlamydia pneumoniae was analyzed. IFN-gamma-/- or IFN-gamma receptor (R)-/- mice were highly susceptible to infection with C. pneumoniae. We found that STAT1-/- mice were even more susceptible to C. pneumoniae than IFN-gamma-/- or IFN-gammaR-/- mice. Phosphorylation of STAT1 was detected in the lungs of C. pneumoniae-infected wild-type, IFN-gammaR-/-, and IFN-alphabetaR-/- mice, but not in mice lacking both IFN-alphabetaR and IFN-gammaR. In line with this, IFN-alphabetaR-/-/IFN-gammaR-/- mice showed increased susceptibility to infection compared with IFN-gammaR-/- mice. However, C. pneumoniae-infected IFN-alphabetaR-/- or IFN regulatory factor 3-/- mice showed no increased susceptibility and similar IFN-gamma expression compared with wild-type mice. CD4+ or CD8+ cells released IFN-gamma in vivo and conferred protection against C. pneumoniae in a STAT1-independent manner. In contrast, STAT1 mediated a nonredundant protective role of nonhemopoietic cells but not of hemopoietic cells. Nonhemopoietic cells accounted for the expression of STAT1-mediated indoleamine 2, 3-dioxygenase and the p47 GTPase LRG-47, but not inducible NO synthase mRNA. In summary, we demonstrate that STAT1 mediates a cooperative effect of IFN-alphabeta and IFN-gamma on nonhemopoietic cells, resulting in protection against C. pneumoniae.  相似文献   

19.
Bacterial pneumonia is a leading cause of morbidity and mortality in the U.S. An effective innate immune response is critical for the clearance of bacteria from the lungs. IL-12, a key T1 cytokine in innate immunity, signals through STAT4. Thus, understanding how STAT4 mediates pulmonary immune responses against bacterial pathogens will have important implications for the development of rational immunotherapy targeted at augmenting innate immunity. We intratracheally administered Klebsiella pneumoniae to wild-type BALB/c and STAT4 knockout (STAT4-/-) mice. Compared with wild-type controls, STAT4-/- mice had decreased survival following intratracheal Klebsiella administration, which was associated with a higher lung and blood bacterial burden. STAT4-/- animals also displayed impaired pulmonary IFN-gamma production and decreased levels of proinflammatory cytokines, including the ELR- CXC chemokines IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma. Although total lung leukocyte populations were similar between STAT4-/- and wild-type animals following infection, alveolar macrophages isolated from infected STAT4-/- mice had decreased production of proinflammatory cytokines, including IFN-gamma, compared with infected wild-type mice. The intrapulmonary overexpression of IFN-gamma concomitant with the systemic administration of IFN-gamma partially reversed the immune deficits observed in STAT4-/- mice, resulting in improved bacterial clearance from the blood. Collectively, these studies demonstrate that STAT4 is required for the generation of an effective innate host defense against bacterial pathogens of the lung.  相似文献   

20.
Although it is known that IFN-gamma-secreting T cells are critical for control of Mycobacterium tuberculosis infection, the contribution of IFN-gamma produced by NK cells to host resistance to the pathogen is less well understood. By using T cell-deficient RAG(-/-) mice, we showed that M. tuberculosis stimulates NK cell-dependent IFN-gamma production in naive splenic cultures and in lungs of infected animals. More importantly, common cytokine receptor gamma-chain(-/-)RAG(-/-) animals deficient in NK cells, p40(-/-)RAG(-/-), or anti-IFN-gamma mAb-treated RAG(-/-) mice displayed significantly increased susceptibility to M. tuberculosis infection compared with untreated NK-sufficient RAG(-/-) controls. Studies comparing IL-12 p40- and p35-deficient RAG(-/-) mice indicated that IL-12 plays a more critical role in the induction of IFN-gamma-mediated antimycobacterial effector functions than IL-23 or other p40-containing IL-12 family members. The increased susceptibility of IL-12-deficient or anti-IFN-gamma mAb-treated RAG(-/-) mice was associated not only with elevated bacterial loads, but also with the development of granulocyte-enriched foci in lungs. This tissue response correlated with increased expression of the granulocyte chemotactic chemokines KC and MIP-2 in NK as well as other leukocyte populations. Interestingly, depletion of granulocytes further increased bacterial burdens and exacerbated pulmonary pathology in these animals, revealing a compensatory function for neutrophils in the absence of IFN-gamma. The above observations indicate that NK cell-derived IFN-gamma differentially regulates T-independent resistance and granulocyte function in M. tuberculosis infection and suggest that this response could serve as an important barrier in AIDS patients or other individuals with compromised CD4+ T cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号