首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Agrobacterium tumefaciens VirB4 ATPase functions with other VirB proteins to export T-DNA to susceptible plant cells and other DNA substrates to a variety of prokaryotic and eukaryotic cells. Previous studies have demonstrated that VirB4 mutants with defects in the Walker A nucleotide-binding motif are non-functional and exert a dominant negative phenotype when synthesized in wild-type cells. This study characterized the oligomeric structure of VirB4 and examined the effects of Walker A sequence mutations on complex formation and transporter activity. VirB4 directed dimer formation when fused to the amino-terminal portion of cI repressor protein, as shown by immunity of Escherichia coli cells to lambda phage infection. VirB4 also dimerized in Agrobacterium tumefaciens, as demonstrated by the recovery of a detergent-resistant complex of native protein and a functional, histidine-tagged derivative by precipitation with anti-His6 antibodies and by Co2+ affinity chromatography. Walker A sequence mutants directed repressor dimerization in E. coli and interacted with His-VirB4 in A. tumefaciens, indicating that ATP binding is not required for self-association. A dimerization domain was localized to a proposed N-terminal membrane-spanning region of VirB4, as shown by the dominance of an allele coding for the N-terminal 312 residues and phage immunity of host cells expressing cI repressor fusions to alleles for the first 237 or 312 residues. A recent study reported that the synthesis of a subset of VirB proteins, including VirB4, in agrobacterial recipients has a pronounced stimulatory effect on the virB-dependent conjugal transfer of plasmid RSF1010 by agrobacterial donors. VirB4'312 suppressed the stimulatory effect of VirB proteins for DNA uptake when synthesized in recipient cells. In striking contrast, Walker A sequence mutants contributed to the stimulatory effect of VirB proteins to the same extent as native VirB4. These findings indicate that the oligomeric structure of VirB4, but not its capacity to bind ATP, is important for the assembly of VirB proteins as a DNA uptake system. The results of these studies support a model in which VirB4 dimers or homomultimers contribute structural information for the assembly of a transenvelope channel competent for bidirectional DNA transfer, whereas an ATP-dependent activity is required for configuring this channel as a dedicated export machine.  相似文献   

2.
The VirB11 ATPase is a putative component of the transport machinery responsible for directing the export of nucleoprotein particles (T complexes) across the Agrobacterium tumefaciens envelope to susceptible plant cells. Fractionation and membrane treatment studies showed that approximately 30% of VirB11 partitioned as soluble protein, whereas the remaining protein was only partially solubilized with urea from cytoplasmic membranes of wild-type strain A348 as well as a Ti-plasmidless strain expressing virB11 from an IncP replicon. Mutations in virB11 affecting protein function were mapped near the amino terminus (Q6L, P13L, and E25G), just upstream of a region encoding a Walker A nucleotide-binding site (F154H;L155M), and within the Walker A motif (P170L, K175Q, and delta GKT174-176). The K175Q and delta GKT174-176 mutant proteins partitioned almost exclusively with the cytoplasmic membrane, suggesting that an activity associated with nucleotide binding could modulate the affinity of VirB11 for the cytoplasmic membrane. The virB11F154H;L155M allele was transdominant over wild-type virB11 in a merodiploid assay, providing strong evidence that at least one form of VirB11 functions as a homo- or heteromultimer. An allele with a deletion of the first half of the gene, virB11 delta1-156, was transdominant in a merodiploid assay, indicating that the C-terminal half of VirB11 contains a protein interaction domain. Products of both virB11 delta1-156 and virB11 delta158-343, which synthesizes the N-terminal half of VirB11, associated tightly with the A. tumefaciens membrane, suggesting that both halves of VirB11 contain membrane interaction determinants.  相似文献   

3.
The VirB11 ATPase is a subunit of the Agrobacterium tumefaciens transfer DNA (T-DNA) transfer system, a type IV secretion pathway required for delivery of T-DNA and effector proteins to plant cells during infection. In this study, we examined the effects of virB11 mutations on VirB protein accumulation, T-pilus production, and substrate translocation. Strains synthesizing VirB11 derivatives with mutations in the nucleoside triphosphate binding site (Walker A motif) accumulated wild-type levels of VirB proteins but failed to produce the T-pilus or export substrates at detectable levels, establishing the importance of nucleoside triphosphate binding or hydrolysis for T-pilus biogenesis. Similar findings were obtained for VirB4, a second ATPase of this transfer system. Analyses of strains expressing virB11 dominant alleles in general showed that T-pilus production is correlated with substrate translocation. Notably, strains expressing dominant alleles previously designated class II (dominant and nonfunctional) neither transferred T-DNA nor elaborated detectable levels of the T-pilus. By contrast, strains expressing most dominant alleles designated class III (dominant and functional) efficiently translocated T-DNA and synthesized abundant levels of T pilus. We did, however, identify four types of virB11 mutations or strain genotypes that selectively disrupted substrate translocation or T-pilus production: (i) virB11/virB11* merodiploid strains expressing all class II and III dominant alleles were strongly suppressed for T-DNA translocation but efficiently mobilized an IncQ plasmid to agrobacterial recipients and also elaborated abundant levels of T pilus; (ii) strains synthesizing two class III mutant proteins, VirB11, V258G and VirB11.I265T, efficiently transferred both DNA substrates but produced low and undetectable levels of T pilus, respectively; (iii) a strain synthesizing the class II mutant protein VirB11.I103T/M301L efficiently exported VirE2 but produced undetectable levels of T pilus; (iv) strains synthesizing three VirB11 derivatives with a four-residue (HMVD) insertion (L75.i4, C168.i4, and L302.i4) neither transferred T-DNA nor produced detectable levels of T pilus but efficiently transferred VirE2 to plants and the IncQ plasmid to agrobacterial recipient cells. Together, our findings support a model in which the VirB11 ATPase contributes at two levels to type IV secretion, T-pilus morphogenesis, and substrate selection. Furthermore, the contributions of VirB11 to machine assembly and substrate transfer can be uncoupled by mutagenesis.  相似文献   

4.
Bacteria use type IV secretion systems (T4SS) to translocate DNA (T-DNA) and protein substrates across the cell envelope. By transfer DNA immunoprecipitation (TrIP), we recently showed that T-DNA translocates through the Agrobacterium tumefaciens VirB/D4 T4SS by forming close contacts sequentially with the VirD4 receptor, VirB11 ATPase, the inner membrane subunits VirB6 and VirB8 and, finally, VirB2 pilin and VirB9. Here, by TrIP, we show that nucleoside triphosphate binding site (Walker A motif) mutations do not disrupt VirD4 substrate binding or transfer to VirB11, suggesting that these early reactions proceed independently of ATP binding or hydrolysis. In contrast, VirD4, VirB11 and VirB4 Walker A mutations each arrest substrate transfer to VirB6 and VirB8, suggesting that these subunits energize this transfer reaction by an ATP-dependent mechanism. By co-immunoprecipitation, we supply evidence for VirD4 interactions with VirB4 and VirB11 independently of other T4SS subunits or intact Walker A motifs, and with the bitopic inner membrane subunit VirB10. We reconstituted substrate transfer from VirD4 to VirB11 and to VirB6 and VirB8 by co-synthesis of previously identified 'core' components of the VirB/D4 T4SS. Our findings define genetic requirements for DNA substrate binding and the early transfer reactions of a bacterial type IV translocation pathway.  相似文献   

5.
6.
Agrobacterium tumefaciens uses a type IV secretion (T4S) system composed of VirB proteins and VirD4 to deliver oncogenic DNA (T-DNA) and protein substrates to susceptible plant cells during the course of infection. Here, by use of the Transfer DNA ImmunoPrecipitation (TrIP) assay, we present evidence that the mobilizable plasmid RSF1010 (IncQ) follows the same translocation pathway through the VirB/D4 secretion channel as described previously for the T-DNA. The RSF1010 transfer intermediate and the Osa protein of plasmid pSa (IncW), related in sequence to the FiwA fertility inhibition factor of plasmid RP1 (IncPalpha), render A. tumefaciens host cells nearly avirulent. By use of a semi-quantitative TrIP assay, we show that both of these 'oncogenic suppressor factors' inhibit binding of T-DNA to the VirD4 substrate receptor. Both factors also inhibit binding of the VirE2 protein substrate to VirD4, as shown by coimmunoprecipitation and bimolecular fluorescence complementation assays. Osa fused to the green fluorescent protein (GFP) also blocks T-DNA and VirE2 binding to VirD4, and Osa-GFP colocalizes with VirD4 at A. tumefaciens cell poles. RSF1010 and Osa interfere specifically with VirD4 receptor function and not with VirB channel activity, as shown by (i) TrIP and (ii) a genetic screen for effects of the oncogenic suppressors on pCloDF13 translocation through a chimeric secretion channel composed of the pCloDF13-encoded MobB receptor and VirB channel subunits. Our findings establish that a competing plasmid substrate and a plasmid fertility inhibition factor act on a common target, the T4S receptor, to inhibit docking of DNA and protein substrates to the translocation apparatus.  相似文献   

7.
virB11, one of the 11 genes of the virB operon, is absolutely required for transport of T-DNA from Agrobacterium tumefaciens into plant cells. Previous studies reported that VirB11 is an ATPase with autophosphorylation activity and localizes to the inner membrane even though the protein does not contain the consensus N-terminal export sequence. In this report, we show that VirB11 localizes to the inner membrane even in the absence of other tumor-inducing (Ti) plasmid-encoded proteins. To facilitate the further characterization of VirB11, we purified this protein from the soluble fraction of an Escherichia coli extract by fusing VirB11 to the maltose-binding protein. The maltose-binding protein-VirB11 fusion was able to complement a virB11 deletion mutant of A. tumefaciens for tumor formation and also localized properly to the inner membrane of A. tumefaciens. The 72-kDa protein, purified from E. coli, exhibited no autophosphorylation, ATPase activity, or ATP-binding activity. To study the importance of the Walker nucleotide-binding site present in VirB11, mutations were generated to replace the conserved lysine residue with either alanine or arginine. Expression of the virB11K175A mutant gene resulted in an avirulent phenotype, and expression of the virB11K175R mutant gene gave rise to an attenuated virulence phenotype. Both mutant proteins were present at levels three to four times higher than that of VirB11 in the wild-type strain. The mutant genes did not exhibit a transdominant phenotype on tumor formation in bacteria that were expressing wild-type virB11. The mutant proteins also localized properly to the inner membrane of A. tumefaciens, but the VirB11K175R protein appeared to be unstable after lysis of the cells.  相似文献   

8.
A hybrid assay, based on the properties of the lambda repressor, was developed to detect FtsZ dimerization in Escherichia coli in vivo. A gene fusion comprising the N-terminal end of the lambda cI repressor gene and the complete E. coli ftsZ gene was constructed. The fused protein resulted in a functional lambda repressor and was able to complement the thermosensitive mutant ftsZ84. Using the same strategy, a series of 10 novel mutants of FtsZ that are unable to dimerize was selected, and a deletion analysis of the protein was carried out. Characterization of these mutants allowed the identification of three separate FtsZ portions: the N-terminal of about 150 amino acids; the C-terminal of about 60 amino acids, which corresponds to the less conserved portion of the protein; and a central region of about 150 residues. Mutants belonging to this region would define the dimerization domain of FtsZ.  相似文献   

9.
Type IV secretion systems mediate the translocation of virulence factors (proteins and/or DNA) from Gram-negative bacteria into eukaryotic cells. A complex of 11 conserved proteins (VirB1-VirB11) spans the inner and the outer membrane and assembles extracellular T-pili in Agrobacterium tumefaciens. Here we report a sequence of protein interactions required for the formation of complexes between VirB2 and VirB5, which precedes their incorporation into pili. The NTPase Walker A active site of the inner membrane protein VirB4 is required for virulence, but an active site VirB4 variant stabilized VirB3 and VirB8 and enabled T-pilus formation. Analysis of VirB protein complexes extracted from the membranes with mild detergent revealed that VirB2-VirB5 complex formation depended on VirB4, which identified a novel T-pilus assembly step. Bicistron expression demonstrated direct interaction of VirB4 with VirB8, and analyses with purified proteins showed that VirB5 bound to VirB8 and VirB10. VirB4 therefore localizes at the basis of a trans-envelope interaction sequence, and by stabilization of VirB8 it mediates the incorporation of VirB5 and VirB2 into extracellular pili.  相似文献   

10.
This study characterized the contribution of Agrobacterium tumefaciens VirB6, a polytopic inner membrane protein, to the formation of outer membrane VirB7 lipoprotein and VirB9 protein multimers required for type IV secretion. VirB7 assembles as a disulfide cross-linked homodimer that associates with the T pilus and a VirB7-VirB9 heterodimer that stabilizes other VirB proteins during biogenesis of the secretion machine. Two presumptive VirB protein complexes, composed of VirB6, VirB7, and VirB9 and of VirB7, VirB9, and VirB10, were isolated by immunoprecipitation or glutathione S-transferase pulldown assays from detergent-solubilized membrane extracts of wild-type A348 and a strain producing only VirB6 through VirB10 among the VirB proteins. To examine the biological importance of VirB6 complex formation for type IV secretion, we monitored the effects of nonstoichiometric VirB6 production and the synthesis of VirB6 derivatives with 4-residue insertions (VirB6.i4) on VirB7 and VirB9 multimerization, T-pilus assembly, and substrate transfer. A virB6 gene deletion mutant accumulated VirB7 dimers at diminished steady-state levels, whereas complementation with a plasmid bearing wild-type virB6 partially restored accumulation of the dimers. VirB6 overproduction was correlated with formation of higher-order VirB9 complexes or aggregates and also blocked substrate transfer without a detectable disruption of T-pilus production; these phenotypes were displayed by cells grown at 28 degrees C, a temperature that favors VirB protein turnover, but not by cells grown at 20 degrees C. Strains producing several VirB6.i4 mutant proteins assembled novel VirB7 and VirB9 complexes detectable by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two strains producing the D60.i4 and L191.i4 mutant proteins translocated IncQ plasmid and VirE2 effector protein substrates in the absence of a detectable T pilus. Our findings support a model that VirB6 mediates formation of VirB7 and VirB9 complexes required for biogenesis of the T pilus and the secretion channel.  相似文献   

11.
The VirB proteins of Agrobacterium tumefaciens form a transport pore to transfer DNA from bacteria to plants. The assembly of the transport pore will require interaction among the constituent proteins. The identification of proteins that interact with one another can provide clues to the assembly of the transport pore. We studied interaction among four putative transport pore proteins, VirB7, VirB8, VirB9 and VirB10. Using the yeast two-hybrid assay, we observed that VirB8, VirB9, and VirB10 interact with one another. In vitro studies using protein fusions demonstrated that VirB10 interacts with VirB9 and itself. These results suggest that the outer membrane VirB7-VirB9 complex interacts with the inner membrane proteins VirB8 and VirB10 for the assembly of the transport pore. Fusions that contain small, defined segments of the proteins were used to define the interaction domains of VirB8 and VirB9. All interaction domains of both proteins mapped to the N-terminal half of the proteins. Two separate domains at the N- and C-terminal ends of VirB9 are involved in its homotypic interaction, suggesting that VirB9 forms a higher oligomer. We observed that the alteration of serine at position 87 of VirB8 to leucine abolished its DNA transfer function. Studies on the interaction of the mutant protein with the other VirB proteins showed that the VirB8S87L mutant is defective in interaction with VirB9. The mutant, however, interacted efficiently with VirB8 and VirB10, suggesting that the VirB8-VirB9 interaction is essential for DNA transfer.  相似文献   

12.
A set of c-mutants of the phage phi80 is isolated. These mutants fit into three genes. According to plaque morphology and frequency of lysogenization of mutants, the genes were named cI, cII and cIII as it was previously done for phage lambda. Their order, determinated by mutant phage crosses, is cIII-sus326-cI-cII-sus250. Sus326 is a mutation in the gene 15, so it is probably an analogue of the N gene of the phage lambda. Thermoinducible mutants of the phage phi80 cts11 and cts12 correspond to the mutant types cItsB and cItsA of the phage lambda and they complement each other. Thus, it is supposed that phi80 phage repressor molecules consist of few protein subunits.  相似文献   

13.
To analyze the DNA binding domain of E coli LexA repressor and to test whether the repressor binds as a dimer to DNA, negative dominant lexA mutations affecting the binding domain have been isolated. A large number of amino acid substitutions between amino acid positions 39 and 46 were introduced using cassette mutagenesis. Mutants defective in DNA binding were identified and then examined for dominance to lexA+. A number of substitutions weakened repressor function partially, whereas other substitutions led to a repressor with no demonstrable activity and a defective dominant phenotype. Since the LexA binding site has dyad symmetry, we infer that this dominance results from interaction of monomers of wild-type LexA protein with mutant monomers and that an oligomeric form of repressor binds to operator. The binding of LexA protein to operator DNA was investigated further using a mutant protein, LexA408, which recognizes a symmetrically altered operator mutant but not wild-type operator. A mixture of mutant LexA408 and LexA+ proteins, but neither individual protein, bound to a hybrid recA operator consisting of mutant and wild-type operator half sites. These results suggest that at least 1 LexA protein monomer interacts with each operator half site. We discuss the role of LexA oligomer formation in binding of LexA to operator DNA.  相似文献   

14.
15.
We have used an approach of linking previously characterized T cell epitopes into immunologically complex synthetic peptides in order to investigate the mechanism of immunodominance. Our results show that first, cI12-26 is highly dominant following immunization with the lambda repressor (cI) protein, but is a minor epitope in the context of the cI:NP peptide. In contrast, the dominant epitope in response to the cI:NP peptide is a new junctional epitope, which is composed of sequences derived from both the cI and influenza nucleoprotein (NP) segments of the composite peptide. Second, T cell recognition of cI:NP is not significantly altered by Ag processing, based on results from glutaraldehyde-fixed APC. Third, the relative affinities of cI and cI:NP for MHC binding are similar, based on in vitro competition, excluding competition at the level of MHC binding as the determinant of immunodominance. Taken together, these results are consistent with the hypothesis that immunodominance of cI:NP is determined by peptide conformation, which affects the configuration of peptide binding to MHC, thus altering T cell recognition. In conclusion, immunodominance is not simply a function of the primary amino acid sequence, but is a function of the context of the epitope within the protein molecule.  相似文献   

16.
The Agrobacterium tumefaciens virB7 gene product contains a typical signal sequence ending with a consensus signal peptidase II cleavage site characteristic of bacterial lipoproteins. VirB7 was shown to be processed as a lipoprotein by (i) in vivo labeling of native VirB7 and a VirB7::PhoA fusion with [3H]palmitic acid and (ii) inhibition of VirB7 processing by globomycin, a known inhibitor of signal peptidase II. A VirB7 derivative sustaining a Ser substitution for the invariant Cys-15 residue within the signal peptidase II cleavage site could not be visualized immunologically and failed to complement a delta virB7 mutation, establishing the importance of this putative lipid attachment site for VirB7 maturation and function. VirB7 partitioned predominantly with outer membrane fractions from wild-type A348 cells as well as a delta virB operon derivative transformed with a virB7 expression plasmid. Expression of virB7 fused to phoA, the alkaline phosphatase gene of Escherichia coli, gave rise to high alkaline phosphatase activities in E. coli and A. tumefaciens cells, providing genetic evidence for the export of VirB7 in these hosts. VirB7 was shown to be intrinsically resistant to proteinase K; by contrast, a VirB7::PhoA derivative was degraded by proteinase K treatment of A. tumefaciens spheroplasts and remained intact upon treatment of whole cells. Together, the results of these studies favor a model in which VirB7 is topologically configured as a monotopic protein with its amino terminus anchored predominantly to the outer membrane and with its hydrophilic carboxyl domain located in the periplasmic space. Parallel studies of VirB5, VirB8, VirB9, and VirB10 established that each of these membrane-associated proteins also contains a large periplasmic domain whereas VirB11 resides predominantly or exclusively within the interior of the cell.  相似文献   

17.
Gram-negative type IV secretion systems (T4SSs) transfer proteins and DNA to eukaryotic and/or prokaryotic recipients resulting in pathogenesis or conjugative DNA transfer. VirB4, one of the most conserved proteins in these systems, has both energetic and structural roles in substrate translocation. We previously predicted a structural model for the large C-terminal domain (residues 425-789) of VirB4 of Agrobacterium tumefaciens. Here we have defined a homology-based structural model for Agrobacterium VirB11. Both VirB4 and VirB11 models predict hexameric oligomers. Yeast two-hybrid interactions define peptides in the C terminus of VirB4 and the N terminus of VirB11 that interact with each other. These interactions were mapped onto the homology models to predict direct interactions between the hexameric interfaces of VirB4 and VirB11 such that the VirB4 C terminus stacks above VirB11 in the periplasm. In support of this, fractionation and Western blotting show that the VirB4 C terminus is localized to the membrane and periplasm rather than the cytoplasm of cells. Additional high resolution yeast two-hybrid results demonstrate interactions between the C terminus of VirB4 and the periplasmic portions of VirB1, VirB8, and VirB10. Genetic studies reveal dominant negative interactions and thus function of the VirB4 C terminus in vivo. The above data are integrated with the existing body of literature to propose a structural, periplasmic role for the C-terminal half of the Agrobacterium VirB4 protein.  相似文献   

18.
The T-pilus is a flexuous filamentous appendage that is essential for Agrobacterium tumefaciens virulence. T-pilus subunits are derived from a VirB2-processing reaction that generates cyclized polypeptide subunits. The T-pilus filament has a diameter of 10 nm and contains a lumen approximately 2 nm in diameter. Biogenesis of the T-pilus requires all 11 VirB proteins, but not the VirD4 protein, which is used in conjugal plasmid transfer. VirB4 and VirB11 are two ATPases that may form homohexameric rings within the transport apparatus, which is composed of VirB6-10 proteins.  相似文献   

19.
The eleven predicted gene products of the Agrobacterium tumefaciens virB operon are believed to form a transmembrane pore complex through which T-DNA export occurs. The VirB10 protein is required for virulence and is a component of an aggregate associated with the membrane fraction of A. tumefaciens. Removal of the putative membrane-spanning domain (amino acids 22 through 55) disrupts the membrane topology of VirB10 (J. E. Ward, E. M. Dale, E. W. Nester, and A. N. Binns, J. Bacteriol. 172:5200-5210, 1990). Deletion of the sequences encoding amino acids 22 to 55 abolishes the ability of plasmid-borne virB10 to complement a null mutation in the virB10 gene, suggesting that the proper topology of VirB10 in the membrane may indeed play a crucial role in T-DNA transfer to the plant cell. Western blot (immunoblot) analysis indicated that the observed loss of virulence could not be attributed to a decrease in the steady-state levels of the mutant VirB10 protein. Although the deletion of the single transmembrane domain would be expected to perturb membrane association, VirB10 delta 22-55 was found exclusively in the membrane fraction. Urea extraction studies suggested that this membrane localization might be the result of a peripheral membrane association; however, the mutant protein was found in both inner and outer membrane fractions separated by sucrose density gradient centrifugation. Both wild-type VirB10 and wild-type VirB9 were only partially removed from the membranes by extraction with 1% Triton X-100, while VirB5 and VirB8 were Triton X-100 soluble. VirB11 was stripped from the membranes by 6 M urea but not by a more mild salt extraction. The fractionation patterns of VirB9, VirB10, and VirB11 were not dependent on each other or on VirB8 or VirD4. The observed tight association of VirB9, VirB10, and VirB11 with the membrane fraction support the notion that these proteins may exist as components of multiprotein pore complexes, perhaps spanning both the inner and outer membranes of Agrobacterium cells.  相似文献   

20.
A 2.9 kb DNA fragment carrying the Escherichia coli proBA region, which encodes the first two enzymes of the proline biosynthetic pathway, was subcloned onto an expression plasmid carrying both the bacteriophage lambda PL promoter (lambda PL) and the lambda gene encoding a thermolabile cI repressor protein (cI857). Derepression of the lambda PL promoter by thermal inactivation of the cI857 repressor protein resulted in the simultaneous overproduction of the proB (gamma-glutamyl kinase) and proA (gamma-glutamyl phosphate reductase) gene products. Nucleotide sequence analysis of the proBA locus allowed gene assignments consistent with the NH2 and COOH-terminal analyses and amino acid compositions of homogeneous preparations of the proB and proA proteins. The contiguous nature of the proB and proA genes suggests that the two genes constitute an operon in which proB precedes proA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号