首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnesium (Mg) deficiency exerts a major influence on the partitioning of dry matter and carbohydrates between shoots and roots. One of the very early reactions of plants to Mg deficiency stress is the marked increase in the shoot-to-root dry weight ratio, which is associated with a massive accumulation of carbohydrates in source leaves, especially of sucrose and starch. These higher concentrations of carbohydrates in Mg-deficient leaves together with the accompanying increase in shoot-to-root dry weight ratio are indicative of a severe impairment in phloem export of photoassimilates from source leaves. Studies with common bean and sugar beet plants have shown that Mg plays a fundamental role in phloem loading of sucrose. At a very early stage of Mg deficiency, phloem export of sucrose is severely impaired, an effect that occurs before any noticeable changes in shoot growth, Chl concentration or photosynthetic activity. These findings suggest that accumulation of carbohydrates in Mg-deficient leaves is caused directly by Mg deficiency stress and not as a consequence of reduced sink activity. The role of Mg in the phloem-loading process seems to be specific; resupplying Mg for 12 or 24 h to Mg-deficient plants resulted in a very rapid recovery of sucrose export. It appears that the massive accumulation of carbohydrates and related impairment in photosynthetic CO2 fixation in Mg-deficient leaves cause an over-reduction in the photosynthetic electron transport chain that potentiates the generation of highly reactive O2 species (ROS). Plants respond to Mg deficiency stress by marked increases in antioxidative capacity of leaves, especially under high light intensity, suggesting that ROS generation is stimulated by Mg deficiency in chloroplasts. Accordingly, it has been found that Mg-deficient plants are very susceptible to high light intensity. Exposure of Mg-deficient plants to high light intensity rapidly induced leaf chlorosis and necrosis, an outcome that was effectively delayed by partial shading of the leaf blade, although the Mg concentrations in different parts of the leaf blade were unaffected by shading. The results indicate that photooxidative damage contributes to development of leaf chlorosis under Mg deficiency, suggesting that plants under high-light conditions have a higher physiological requirement for Mg. Maintenance of a high Mg nutritional status of plants is, thus, essential in the avoidance of ROS generation, which occurs at the expense of inhibited phloem export of sugars and impairment of CO2 fixation, particularly under high-light conditions.  相似文献   

2.
The effect of varied phosphorus (10 and 250 mmol P m–3potassium (50 and 2010 mmol K m–3) and magnesium (20 and1000 mmol Mg m–3 supply on sucrose, reducing sugars, aminoacids, P, K, and Mg in phloem exudate was studied in bean (Phaseolusvulgaris L.) plants over a 12 d growth period in nutrient solution.Phloem exudates were collected from detached primary leavesusing the EDTA-promoted exudation technique. Compared with controlnutrient-sufficient plants, sucrose export in the phloem exudatewas drastically decreased by K deficiency and, particularly,by Mg deficiency, whereas P deficiency either had no effector stimulated sucrose export. In Mg-deficient plants the rateof sucrose export was decreased to 10–20% of the controlplants. There was a close Inverse relationship between phloemexport and leaf concentration of sucrose: higher leaf concentrationsof sucrose were accompanied by lower phloem export of sucrose.In contrast to sucrose, reducing sugars in the exudates werevery low and not affected by P, K and Mg deficiency. The phloemexport of amino acids was strongly depressed by Mg deficiency,but only slightly by P and K deficiency. Resupplying Mg to Mg-deficientplants for 12 h during the dark or light periods rapidly stimulatedsucrose export. After resup ply of Mg for 24 h and 48 h therate of sucrose export was comparable with the rate in the controlplants. The results demonstrate a key role for Mg in phloem loadingand export of photosynthates from source leaves, especiallysucrose. Inhibition of root growth and development of visualsymptoms of chlorosis in Mg-deficient plants are suggested asconsequences of Impaired phloem loading. In agreement with thisin P-deficient plants where phloem loading was not impaired,chlorosis was absent and root growth was maintained at a highlevel. Key words: Bean, carbon partitioning, magnesium nutrition, phloem transport, phosphorus nutrition, potassium nutrition  相似文献   

3.
  • Sugar beet (Beta vulgaris L.) is one of the most important sugar‐producing plants worldwide and provides about one third of the sugar consumed by humans. Here we report on molecular characterisation of the BvSUT1 gene and on the functional characterisation of the encoded transporter.
  • In contrast to the recently identified tonoplast‐localised sucrose transporter BvTST2.1 from sugar beet taproots, which evolved within the monosaccharide transporter (MST) superfamily, BvSUT1 represents a classical sucrose transporter and is a typical member of the disaccharide transporter (DST) superfamily.
  • Transgenic Arabidopsis plants expressing the β‐GLUCURONIDASE (GUS) reporter gene under control of the BvSUT1‐promoter showed GUS histochemical staining of their phloem; an anti‐BvSUT1‐antiserum identified the BvSUT1 transporter specifically in phloem companion cells. After expression of BvSUT1 cDNA in bakers’ yeasts (Saccharomyces cerevisiae) uptake characteristics of the BvSUT1 protein were studied. Moreover, the sugar beet transporter was characterised as a proton‐coupled sucrose symporter in Xenopus laevis oocytes.
  • Our findings indicate that BvSUT1 is the sucrose transporter that is responsible for loading of sucrose into the phloem of sugar beet source leaves delivering sucrose to the storage tissue in sugar beet taproot sinks.
  相似文献   

4.
  • Being the principal product of photosynthesis, sucrose is involved in many metabolic processes in plants. As magnesium (Mg) is phloem mobile, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed.
  • Mg deficiency effects on carbohydrate contents and invertase activities were determined in Sulla carnosa Desf. Plants were grown hydroponically at different Mg concentrations (0.00, 0.01, 0.05 and 1.50 mM Mg) for one month.
  • Mineral analysis showed that Mg contents were drastically diminished in shoots and roots mainly at 0.01 and 0.00 mM Mg. This decline was adversely associated with a significant increase of sucrose, fructose and mainly glucose in shoots of plants exposed to severe deficiency. By contrast, sugar contents were severely reduced in roots of these plants indicating an alteration of carbohydrate partitioning between shoots and roots of Mg‐deficient plants. Cell wall invertase activity was highly enhanced in roots of Mg‐deficient plants, while the vacuolar invertase activity was reduced at 0.00 mM Mg. This decrease of vacuolar invertase activity may indicate the sensibility of roots to Mg starvation resulting from sucrose transport inhibition. 14CO2 labeling experiments were in accordance with these findings showing an inhibition of sucrose transport from source leaves to sink tissues (roots) under Mg depletion.
  • The obtained results confirm previous findings about Mg involvement in photosynthate loading into phloem and add new insights into mechanisms evolved by S. carnosa to cope with Mg shortage in particular the increase of the activity of cell wall invertase.
  相似文献   

5.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

6.
Magnesium deficiency in plants is a widespread problem, affecting productivity and quality in agriculture, yet at a physiological level it has been poorly studied in crop plants. Here, a physiological characterization of Mg deficiency in Beta vulgaris L., an important crop model, is presented. The impact of Mg deficiency on plant growth, mineral profile and photosynthetic activity was studied. The aerial biomass of plants decreased after 24 days of hydroponic culture in Mg-free nutrient solution, whereas the root biomass was unaffected. Analysis of mineral profiles revealed that Mg decreased more rapidly in roots than in shoots and that shoot Mg content could fall to 3 mg g–1 DW without chlorosis development and with no effect on photosynthetic parameters. Sucrose accumulated in most recently expanded leaves before any loss in photosynthetic activity. During the development of Mg deficiency, the two photosystems showed sharply contrasting responses. Data were consistent with a down-regulation of PSII through a loss of antenna, and of PSI primarily through a loss of reaction centres. In each case, the net result was a decrease in the overall rate of linear electron transport, preventing an excess of reductant being produced during conditions under which sucrose export away from mature leaf was restricted.  相似文献   

7.
8.
《Plant science》1986,46(1):35-41
In an attempt to address the controversy in the literature as to whether phytohormones have any direct effect on phloem loading of sucrose, we investigated the effect of gibberellic acid (GA3) and indoleacetic acid (IAA) on sugar transport and translocation in celery (Apium graveolens L. cv. Utah 5270). Both hormones enhanced sucrose uptake into isolated vascular bundles and phloem tissue of celery and enhanced the export of 14C assimilates from leaves of intact plants in vivo. The hormone-induced increase of uptake into isolated vascular bundles or phloem was specific for sucrose and mannitol which are translocated in phloem. Furthermore, the hormone-induced increase in translocation was not due to an increase in sink demand, since neither glucose nor sucrose uptake rates were affected in the storage parenchyma tissue discs (sink region) in the presence of GA3 or IAA. The evidence suggests that phytohormones may have a direct effect on phloem loading of sucrose. The possibility of short-term GA3 and IAA effects on processes resulting in membrane transport of sugars in celery is discussed.  相似文献   

9.
Shootlets of kiwifruit plants (Actinidia deliciosa) were culturedin vitro. Combinations of light intensity, Mg and sucrose in the cultures showed that an increase of light intensity resulted in a corresponding increase of the relative size of the leaf mesophyll cells and in a decrease of the numbers of chloroplasts and contained starch grains. The addition of sucrose to the substrate media negatively affected the size of the mesophyll cells under normal Mg concentration (35 mg l−1), and positively under high Mg concentration (105 mg l−1 ). Sucrose further resulted in an increase in the numbers of chloroplasts and contained starch grains. The photosynthetic capacity of leaves greatly increased when Mg concentration was enhanced and sucrose was excluded from the nutrient substrate. Total sugar accumulation in all treatments was favoured by normal light intensity and addition of sucrose.  相似文献   

10.
The hypothesis was tested that, in plants of the alpine meadow grass (Poa alpina L.) exposed to elevated CO2, net photosynthesis and export from source leaves is reduced as a result of feedback from sinks. Nutrient supply was used as one way of reducing photosynthesis and export. Single plants were grown in sand culture under specified controlled environmental conditions for a period of 50 d at two levels of nitrogen and phosphorus ('low': 0.2 mol m-3 N, 0.04 mol m-3 P; 'high': 2.5 mol m-3 N, 0.5 mol m-3 P). Compartmentation within, and export of carbon from, individual youngest fully expanded leaves of acclimated plants was determined using 14C feeding and efflux plus mass balance calculations of carbohydrate export. Independent of treatment, the bulk of soluble carbohydrate (65-75%) was present as fructan, with most of the remainder being sucrose. Depending on nutrient supply, CO2 could alter export from source leaves either by a reduction in the amount of sucrose present in a readily available pool for transport, or by altering the rate constant describing phloem loading.Key words: Poa alpina L., phloem transport, carbohydrate, compartmentation, export, elevated CO2, nutrients.   相似文献   

11.
12.
Mature leaves of corn plants (Zea mays L. cv. Prior) which were darkened for 48 h contain neither bundle-sheath starch nor glucose, and their sucrose content is below 5 M. In such leaves phloem export has ceased. When re-illuminated, photosynthetic sucrose production starts without delay, but the sucrose: glucose ratio is 1.25:1. Obviously, most of the new-formed sugar is utilized locally. Labeling with 14CO2 has shown that phloen export starts 30 to 40 min after the onset of photosynthesis, when the sucrose: glucose ratio has increased to 13:1. The first newly formed starch can be detected when phloem export is reactivated. Glucose content remains constantly low af about 2 M for at least 2 h, and it never exceeds 10 M. Radioactivity in the exporting veins is about five times higher after 2 to 7 h of re-illumination than in the 14-h-day plant. Therefore, phloem export is either intensified during the period of reactivation or exported assimilates are partly unloaded along their way. Comparison of photosynthetic activity of equal-sized leaf strips has shown that both accumulation of photosynthates and radioactivity of exporting veins are about three times higher in the detached strip than in the strip which remained attached to the mother plant.  相似文献   

13.
Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.

Mutations in Bk2L3 result in dwarfed plants with decreased anisotropic cell growth, cellulose deposition, phloem pressure, sucrose export, and carbohydrate hyperaccumulation in mature maize leaves.  相似文献   

14.
Wilson C  Lucas WJ 《Plant physiology》1987,84(4):1088-1095
Sugar levels in Beta vulgaris leaves were increased by heat-girdling the petiole and returning the plant to the controlled-environment chamber for 10 and 34 hours. After 10 hours, sucrose influx into the treated leaves was similar to the controls, although sucrose levels increased from 2.1 to 5.3 micromoles per milligram chlorophyll. However, after a 34-hour treatment, sucrose levels increased from 2.1 to 11.5 micromoles per milligram chlorophyll. In this instance, sucrose influx decreased relative to the untreated controls. Decreasing sugar levels by DCMU treatment resulted in a small stimulation of sucrose influx. A similar DCMU treatment applied to leaves of Allium cepa also resulted in an increase in sucrose influx. However, in A. cepa we could not attribute this increase to a lowering of sugar levels, as the kinetic profiles obtained from control leaves did not vary from each other throughout the day, despite considerable changes in sugar levels. Additionally, it appeared that sucrose uptake in onion may be set at some point and remains invariant throughout the day. Similar studies were also conducted on discs cut from mature leaves of Spinacia oleracea var America. Between 1 and 8 hours after the onset of the photoperiod, the sucrose content of the spinach leaves increased from 2.6 to 9.3 micromoles per milligram chlorophyll. A comparison of the kinetic profiles obtained from leaf discs, taken at these times, indicated that sucrose uptake was not influenced by these changes in internal sugar levels. The relationship between the above findings and `trans' inhibition of exogenous sucrose uptake is discussed. Although intermediate changes in sugar levels in sugar beet leaves did not appear to affect sucrose influx, autoradiographic studies revealed that these changes dramatically affected the partitioning of exogenously supplied [14C]sucrose. Our results indicate that while intermediate changes in internal sugar levels have little effect on sucrose influx across the plasmalemma, they may dramatically affect partitioning between the phloem and the mesophyll vacuole.  相似文献   

15.
The shoots of fireweed (Chamerion angustifolium (L.) Holub) and common flax (Linum usitatissimum L.) were infused with 50 mM KNO3 solution to compare the influence of nitrate on photosynthesis and assimilate export from leaves in plants with the symplastic and apoplastic phloem loading, respectively. The infusion of nitrate in the shoots of both plant species lowered 14CO2 fixation and enhanced the assimilate transport in the upward direction. Irrespective of the phloem loading type, the incorporation of 14C into sucrose decreased in nitrate-treated seedlings exposed to assimilation for short (3 min) periods. However, when shoots were sampled 3 h after 14CO2 fixation, the content of 14C-labeled sucrose was higher in treated plants than in control seedlings infused with water. In fireweed, in contrast to flax, a similar temporal pattern was also characteristic for 14C incorporation into oligosaccharides. Within 3 h after nitrate infusion into the fireweed apoplast, the mitochondria and the cell vacuolar system underwent ultrastructural changes indicative of the increase in cytosolic osmotic pressure. At the same time, we observed accumulation of fibrillar inclusions in cell vacuoles of vascular bundles. It is concluded that the mechanisms of nitrate influence on photosynthesis and sugar export in leaves of symplastic and apoplastic plants are similar to a certain extent and involve the blocking of pores in phloem tubes, initiated by the NO-signaling system.  相似文献   

16.
Terry N  Ulrich A 《Plant physiology》1974,54(3):379-381
The effects of Mg deficiency on the photosynthesis and respiration of sugar beets (Beta vulgaris L. cv. F58-554H1) were studied by withholding Mg from the culture solution and by following changes in CO2 and water vapor exchange of attached leaves. Leaf blade Mg concentration decreased from about 1200 to less than 200 meq kg−1 dry matter without change in the rate of photosynthetic CO2 uptake per unit leaf area, while from 200 to 50 meq kg−1 the rate decreased to one-third. Rates of photorespiratory evolution of CO2 into CO2-free air responded to Mg like those of photosynthetic CO2 uptake, the rates decreasing to one-half, below 200 meq kg−1. Respiratory CO2 evolution in the dark increased almost 2-fold in low Mg leaves. Magnesium deficiency had less effect on leaf (mainly stomatal) diffusion resistance (r1) than on mesophyll resistance (rm); in Mg-deficient plants rm increased from 2.9 to 7.1 sec cm−1, whereas r1 became significantly greater than the control value only in the most severe instances of Mg deficiency.  相似文献   

17.
Potassium nutrition and translocation in sugar beet   总被引:6,自引:4,他引:2       下载免费PDF全文
The effect of increased net foliar K+ accumulation on translocation of carbon was studied in sugar beet (Beta vulgaris, L. var. Klein E and US H20) plants. Net accumulation of recently absorbed K+ was studied by observing arrival of 42K+ per unit area of leaf. Labeled K+ was added to give an initial concentration at 2 or 10 millimolar K+ in mineral nutrient solution. Because the newly arrived K+ constitutes a small part of the total leaf K+ in plants raised in 10 millimolar K+, export of 42K+ by phloem was negligible over the 2- to 3-day period; consequently, accumulation is a measure of arrival in the xylem. In leaves from plants in 2 millimolar K+, export by the phloem was estimated to be of the same order as import by the xylem; K+ per area was observed to remain at a steady-state level. Increasing the supply of K+ to 10 millimolar caused arrival in the xylem to increase 2- to 3-fold; K+ per area increased gradually in the mature leaves. Neither net carbon exchange nor translocation of sugar increased in response to a faster rate of arrival of K+ over a 6- to 8-hour period. In the absence of short-term effects, it is suggested that K+-promoted increase in synthetic metabolism may be the basis of the increased carbon assimilation and translocation in plants supplied with an above-minimal level of K+.  相似文献   

18.
Limitations in our understanding about the mechanisms that underlie source‐sink assimilate partitioning are increasingly becoming a major hurdle for crop yield enhancement via metabolic engineering. By means of a comprehensive approach, this work reports the functional characterization of a DnaJ chaperone related‐protein (named as SPA; sugar partition‐affecting) that is involved in assimilate partitioning in tomato plants. SPA protein was found to be targeted to the chloroplast thylakoid membranes. SPA‐RNAi tomato plants produced more and heavier fruits compared with controls, thus resulting in a considerable increment in harvest index. The transgenic plants also displayed increased pigment levels and reduced sucrose, glucose and fructose contents in leaves. Detailed metabolic and enzymatic activities analyses showed that sugar phosphate intermediates were increased while the activity of phosphoglucomutase, sugar kinases and invertases was reduced in the photosynthetic organs of the silenced plants. These changes would be anticipated to promote carbon export from foliar tissues. The combined results suggested that the tomato SPA protein plays an important role in plastid metabolism and mediates the source‐sink relationships by affecting the rate of carbon translocation to fruits.  相似文献   

19.
The influence of varied supply of phosphorus (10 and 250 mmolP m–3) potassium (50 and 2010 mmol K m–3) and magnesium(20 and 1000 mmol Mg m–3) on the partitioning of dry matterand carbohydrates (reducing sugars, sucrose and starch) betweenshoots and roots was studied in bean (Phaseolus vulgaris) plantsgrown in nutrient solution over a 12 d period. Shoot and rootgrowth were quite differently affected by low supply of P, K,and Mg. The shoot/root dry weight ratios were 4.9 in the control(sufficient plants), 1.8 in P-deficient, 6.9 in K-deficientand 10.2 in Mg-deficient plants. In primary (source) leaves,but not in trifoliate leaves, concentrations of reducing sugars,sucrose and starch were also differently affected by low nutrientsupply. In primary leaves under K deficiency and, particularlyMg deficiency, the concentrations of sucrose and reducing sugarswere much higher than in control and P-deficient plants. Magnesiumdeficiency also distinctly increased the starch concentrationin the primary leaves. In contrast, in roots, the lowest concenfrationsof sucrose, reducing sugars and starch were found in Mg-deficientplants, whereas the concentrations of sucrose and starch wereparticularly high in P-deficient plants. There was a close relationshipbetween shoot/root dry weight ratios and relative distributionof total carbohydrates (sugars and starch) in shoot and roots.Of the total amounts of carbohyd rates per plant, the followingproportions were parti tioned to the roots: 22.7% in P-deficient,15.7% in control, 3.4% in K-deficient and 0.8% in Mg-deficientplants. The results indicate a distinct role of Mg and K in the exportof photosynthates from leaves to roots and suggest that alterationin photosynthate partitioning plays a major role in the differencesin dry matter distribution between shoots and roots of plantssuffering from mineral nutrient deficiency. Key words: Bean, carbohydrates, magnesium nutrition, phosphorus nutrition, potassium nutrition, shoot/root growth  相似文献   

20.
Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot‐grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre‐veraison, full veraison and post‐veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA‐treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build‐up of non‐structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号