首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Zeidan  P Han  J Johnson 《FEBS letters》1985,192(2):294-298
The local environment of the essential sulfhydryl groups in chicken liver fructose-1,6-bisphosphatase has been investigated by ESR techniques using a series of iodoacetamide spin labels, varying in chain length between the iodoacetate and nitroxide free radical group. The ESR spectrum of spin-labeled chicken liver fructose-1,6-bisphosphatase showed that the sites of labeling were highly immunobilized when the enzyme was chemically modified by spin label iodoacetate, suggesting that the sulfhydryl groups of the protein are in a small, confined environment. From the change in the ESR spectra of these nitroxides as a function of chain length, we conclude that the sulfhydryl group is located in a cleft approx. 10.5A in depth.  相似文献   

2.
The dynamic spin label method was used to study protein-protein interactions in the model complex of the enzyme barnase (Bn) with its inhibitor barstar. The C40A mutant of barstar (Bs) containing a single cysteine residue was modified with two different spin labels varying in length and structure of a flexible linker. Each spin label was selectively bound to the Cys82 residue, located near the Bn-Bs contact site. The formation of the stable protein complex between Bn and spin labeled Bs was accompanied by a substantial restriction of spin label mobility, indicated by remarkable changes in the registered EPR spectra. Order parameter, S, as an estimate of rapid reorientation of spin label relative to protein molecule, was sharply increasing approaching 1. However, the rotational correlation time tau for spin-labeled Bs and its complex with Bn in solution corresponded precisely to their molecular weights. These data indicate that both Bs and its complex with Bn are rigid protein entities. Spin labels attached to Bs in close proximity to an interface of interaction with Bn, regardless of its structure, undergo significant restriction of mobility by the environment of the contact site of the two proteins. The results show that this approach can be used to investigate fusion proteins containing Bn or Bs.  相似文献   

3.
The S1 thiol groups of heavy meromyosin (HMM) have been selectively spin labeled with a paramagnetic analog of iodoacetamide (10) and the effects of tryptic digestion on the ESR spectrum and ATPase activity have been studied. The loss of ATPase activity on tryptic digestion occurs at the same rate with spin-labeled or unlabeled HMM suggesting that spin labeling produces no major change in the conformation of HMM. ESR spectra indicate that spin labels bound to S1 groups of HMM are strongly immobilized; spectra of subfragment-1 isolated from tryptic digests of spin-labeled HMM are the same as those of labeled HMM. ESR spectra of S1-spin-labeled peptides produced by tryptic digestion of HMM indicate essentially no immobilization of labels, the spectra being similar to that of a solution of free labels. The ESR spectrum of an unfractionated digest of HMM exhibits a peak attributable to strongly immobilized labels on HMM and subfragment-1 and a peak attributable to weakly immobilized labels bound to peptides. The rate at which spin-labeled peptides are released on tryptic digestion can be measured on the unfractionated digest by the decrease in the ESR peak corresponding to HMM and subfragment-1. The appearance of peptides containing spin-labeled S1 groups parallels the loss of ATPase activity. No evidence has been found for the existence of an enzymatically active subfragment-1 lacking S1 thiol groups.  相似文献   

4.
Nitroxide spin labels were incorporated into selected sites within the β-barrel of the bacterial outer-membrane transport protein BtuB by site-directed mutagenesis, followed by chemical modification with a methanethiosufonate spin label. The electron paramagnetic resonance lineshapes of the spin-labeled side chain (R1) from these sites are highly variable, and have spectral parameters that reflect secondary structure and local steric constraints. In addition, these lineshape parameters correlate with crystallographic structure factors for Cα carbons, suggesting that the motion of the spin label is modulated by both the local modes of motion of the spin label and the local dynamics of the protein backbone. Experiments performed as a function of lipid composition and sample temperature indicate that nitroxide spin labels on the exterior surface of BtuB, which face the membrane hydrocarbon, are not strongly influenced by the phase state of the bulk lipids. However, these spectra are modulated by membrane hydrocarbon thickness. Specifically, the values of the scaled mobility parameter for the R1 lineshapes are inversely proportional to the hydrocarbon thickness. These data suggest that protein dynamics and structure in BtuB are directly coupled to membrane hydrophobic thickness.  相似文献   

5.
The mechanism of methyl phenyldiazenecarboxylate (azoester) damage to human erythrocyte membranes has been investigated by means of spin labels. Azoester treatment exposed protein binding sites for non-covalently bound stearic acid and androstane spin labels that were occult in the untreated membrane. Experiments with iodoacetamide and N-alkylmaleimide spin labels suggested that azoester destroyed membrane sulfhydryl groups. No change in the structural integrity of membrane lipid components could be detected.  相似文献   

6.
Lipid protein interactions in biological membranes differ markedly depending on whether the protein is intrinsic or extrinsic. These interactions are studied using lipid spin labels diffused into model systems consisting of phospholipid bilayers and a specific protein. Recently, an intrinsic protein complex, cytochrome oxidase, was examined and the data suggest there is a boundary layer of immobilized lipid between the hydrophobic protein surfaces and adjacent fluid bilayer regions. In the present study, a typical extrinsic protein, cytochrome c, was complexed with a cardiolipin/lecithin (1:4 by weight) mixture. The phospholipids in the presence and absence of cytochrome c exhibit typical bilayer behavior as jedged by four spin-labeling criteria: fluidity gradient, spectral anisotropy of oriented bilayers, response to hydration and the polarity profile. Any effects of cytochrome c on the ESR spectra of lipid spin labels are small, in contrast to the effects of intrinsic proteins. These data are consistent with electrostatic binding of cytochrome c to the charged groups of the phospholipids, and indicate that the presence of extrinsic proteins will not interfere with measurements of boundary lipid in intact biological membranes.  相似文献   

7.
The physical state of mitochondrial membranes has been investigated by means of stearic acid spin labels and of a maleimide spin label covalently bound to protein sulfhydryl groups. Stearic acid spin labels 5-NS and 16-NS show that n-butanol enhances the lipid fluidity of mitochondrial membranes in the whole temperature range between 4 and 37 degrees C; the effects in the hydrophobic membrane core, probed by 16-NS, are already apparent at 10 mM butanol. In liposomes formed of mitochondrial phospholipids, a fluidizing effect appears only at much higher concentration. Such results are compatible with the idea that butanol destabilizes lipid-protein interactions. On the other hand, the ratio between weakly and strongly immobilized SH groups probed by maleimide spin label is only slightly affected in the temperature range of 4-37 degrees C by addition of high concentrations of n-butanol, indicating that the environments probed are stable to agents inducing fluidity changes in the lipids. There are, however, indications that the environment probed by maleimide is affected by lipids, since the spin label, when bound to lipid-depleted mitochondria, becomes more immobilized, reconstitution of such lipid-depleted membranes with phospholipids restores the original spectra.  相似文献   

8.
The interaction of the major acidic bovine seminal plasma protein, PDC-109, with dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by spin-label electron spin resonance spectroscopy. Studies employing phosphatidylcholine spin labels, bearing the spin labels at different positions along the sn-2 acyl chain indicate that the protein penetrates into the hydrophobic interior of the membrane and interacts with the lipid acyl chains up to the 14th C atom. Binding of PDC-109 at high protein/lipid ratios (PDC-109:DMPC = 1:2, w/w) results in a considerable decrease in the chain segmental mobility of the lipid as seen by spin-label electron spin resonance spectroscopy. A further interesting new observation is that, at high concentrations, PDC-109 is capable of (partially) solubilizing DMPC bilayers. The selectivity of PDC-109 in its interaction with membrane lipids was investigated by using different spin-labeled phospholipid and steroid probes in the DMPC host membrane. These studies indicate that the protein exhibits highest selectivity for the choline phospholipids phosphatidylcholine and sphingomyelin under physiological conditions of pH and ionic strength. The selectivity for different lipids is in the following order: phosphatidylcholine approximately sphingomyelin > or = phosphatidic acid (pH 6.0) > phosphatidylglycerol approximately phosphatidylserine approximately and rostanol > phosphatidylethanolamine > or = N-acyl phosphatidylethanolamine > cholestane. Thus, the lipids bearing the phosphocholine moiety in the headgroup are clearly the lipids most strongly recognized by PDC-109. However, these studies demonstrate that this protein also recognizes other lipids such as phosphatidylglycerol and the sterol androstanol, albeit with somewhat reduced affinity.  相似文献   

9.
Electron spin resonance measurements on oxyhemoglobin labelled with nitroxide spin labels indicate that conformational changes occuring in this protein during heat treatment manifest themselves in changes: 1) of the rotational correlation time; 2) of the equilibrium between two isomers of the labels. The results indicate that the denaturation process in oxyhemoglobin corresponds to at least a two step transition, with and indication that the changes at the tyrosine pocket of the α1β2 (Tyr 145β) contact may be continuous with temperature.  相似文献   

10.
Rapid loss of the electron spin resonance signal from a variety of spin labels is observed when ferricytochrome c or metmyogloblin are combined with lipids. Evidence is presented that this loss of signal can be used as a sensitive method to study lipid oxidation catalyzed by heme proteins. Under aerobic conditions and with lipids which bind the heme protein, the kinetics of the oxidation process as observed by the spin label method are identical to the kinetics previously observed by measurements of oxygen uptake. Use of pre-oxidized lipids under anaerobic conditions indicates that cytochrome c reacts with a product of lipid oxidation. Kinetic studies of the anaerobic reaction indicate that cytochrome c reacts rapidly with lipid oxidation products in membrane areas far larger than the area occupied by cytochrome c, implying rapid transport of reactive species within the membrane interior in directions parallel to the membrane surface. Under anaerobic conditions, reaction of cytochrome c with lipid oxidation products appears to produce a relatively long lived (hours) species located in the hydrophobic portion of the membrane, which is capable of subsequent reaction with lipid-soluble spin labels.  相似文献   

11.
A transition in the temperature dependences of Ca2+ accumulation and ATPase activity occurs at 20 ° C in Sarcoplasmic reticulum membranes. The transition is characterized by an abrupt change in the activation energies for the cation transport process and the associated enzyme activities. The difference in activation energies below and above 20 °C appears to be due to changes in the entropy of activation rather than in the free energy of activation. Also, the temperature dependences of spectral parameters of lipophilic spin-labeled probes and protein-bound spin labels exhibit different behaviors on either side of this temperature. Above 20 °C the lipid matrix probed by the labels exhibits a large increase in molecular motion and a decrease in the apparent ordering of lipid alkyl chains. In addition, labels covalently bound to enzymic reactive sites indicate that the motion of protein side-chains is sensitive to this transition. The results are consistent with an order-disorder transition involving the lipid alkyl chains of the Sarcoplasmic membrane, and with a model in which molecular motion, Ca2+ transport and enzyme activity are limited by local viscosity of hydrophobic regions at temperatures below the transition.Another modification of the Sarcoplasmic reticulum membrane occurs between 37 and 40 °C. It appears that at this temperature the processes governing Ca2+ accumulation and ATPase activity are uncoupled, and Ca2+ accumulation is inhibited, while ATPase activity and passive Ca2+ efflux proceed at rapid rates. Parallel transitions of spectroscopic parameters originating from spin labels, covalently bound to the Sarcoplasmic reticulum ATPase, indicate that the uncoupling is due to a thermally-induced protein conformational change.  相似文献   

12.
Parallel experiments employing sialic acid- and protein specific spin labels have been performed to monitor the effects on the physical state of this carbohydrate and membrane proteins of human erythrocytes induced by the binding of three lectins, Phaseolus vulgaris phytohaemagglutinin (PHA), wheat germ agglutinin (WGA), and Concanavalin-A (Con-A). PHA and WGA, both of which are known to bind at different sites on the principal sialoglycoprotein of human erythrocytes, glycophorin, had markedly different effects: compared to control values, PHA decreased the apparent correlation time of the sialic acid specific spin probe by 10% while this parameter was decreased by 33% by WGA. The protein specific spin label also monitored differential effects of these lectins: the relevant electron spin resonance parameter (the W/S ratio) was reduced 33% by PHA and increased by WGA over 17% from that of control values. Con-A, which is known to bind to the principal transmembrane protein, Band 3, had no effect on sialic acid or membrane proteins as assessed by the two spin labels employed. These results suggest that (1) the effects of binding of these different lectins, two of which bind to the same cell surface receptor, can be discriminated by use of spin labeling methods; (2) binding events occuring at the cell surface have distinct and pronounced effects on the physical state of proteins within the membrane; (3) the different results with PHA and WGA both of which bind to glycophorin are indicative of multiple and complex interactions of this glycoprotein with the membrane proteins in the erythrocyte; and (4) that the spin labelling technique has the potential to investigate the relationships between cell-surface binding events to membrane structural-functional interactions.  相似文献   

13.
Whether or not the thermotropic change at about 18 degrees C in the physical state of Ca2+-ATPase protein molecules of sarcoplasmic reticulum membranes could be transmitted to lipids through protein-lipid interactions was investigated using a spin-label technique. Fatty acid spin labels were used to probe the bulk membrane lipids while long-chain spin labels attached at one end to the Ca2+-ATPase molecules through a covalent bond were used to monitor the boundary lipids. The results on the temperature-dependence of alkyl-chain flexibility of lipid molecules indicate that the change in the state of the protein molecules is accompanied by one of the boundary lipids, but not of the bulk lipids.  相似文献   

14.
Human serum albumin has been chemically modified by two different spin pH-sensitive labels of the imidazoline series containing in their structure alkylating and carboxyl groups, respectively. The ESR spectra of spin-labeled proteins are sensitive to pH of the medium. The pK values of spin-labeled proteins measured by the ESR method are: pKI = 3.2 +/- 0.1; pKII = 4.75 +/- 0.1. The resulting macromolecular spin pH probes may be used for measuring the local values of pH by the ESR technique within the pH range of 1.8-6.2.  相似文献   

15.
Model membranes consisting of dimyristoyl phosphatidylcholine and a hydrophobic protein from bovine myelin, lipophilin, were studied using the cholesterol-resembling cholestane ESR spin label. Orientation of the membranes made it possible to deconvolute the spectra into two fractions, one of oriented spin labels reflecting phospholipid bilayer of high order, and one of isotropically tumbling spin labels ascribed to the lipid fraction surrounding the protein molecule (boundary lipid). This isotropic tumbling is different from the behavior of phospholipid molecules near the protein, which retain some degree of order, and indicates that the boundary lipid fraction in our model system forms a rather fluid environment for the protein. A nonlinear relation was found between protein concentration and amount of boundary spin labels. Addition of cholesterol decreases the amount of boundary spin labels. Both findings form evidence for a preferential binding of cholesterol by the membrane protein.  相似文献   

16.
Rapid loss of the electron spin resonance signal from a variety of spin labels is observed when ferricytochrome c or metmyoglobin are combined with lipids. Evidence is presented that this loss of signal can be used as a sensitive method to study lipid oxidation catalyzed by heme proteins. Under aerobic conditions and with lipids which bind the heme protein, the kinetics of the oxidation process as observed by the spin label method are identical to the kinetics previously observed by measurements of oxygen uptake. Use of pre-oxidized lipids under anaerobic conditions indicates that cytochrome c reacts with a product of lipid oxidation. Kinetic studies of the anaerobic reaction indicate that cytochrome c reacts rapidly with lipid oxidation products in membrane areas far larger than the area occupied by cytochrome c, implying rapid transport of reactive species within the membrane interior in directions parallel to the membrane surface. Under anaerobic conditions, reaction of cytochrome c with lipid oxidation products appears to produce a relatively long lived (hours) species located in the hydrophobic portion of the membrane, which is capable of subsequent reaction with lipid-soluble spin labels.  相似文献   

17.
The intramembrane locations of several spin labeled probes in small egg phosphatidylcholine (egg PC) vesicles were determined from the enhancement of the 13C nuclear spin lattice relaxation of the membrane phospholipid. Electron paramagnetic resonance (EPR) spectroscopy was also used to measure the relative environmental polarities of the spin labels in egg PC vesicles, ethanol and aqueous solution. The binding location of the spin label group was determined for a pair of hydrophobic ion spin labels, a pair of long chain amphiphiles, and three stearates containing doxyl groups at the 5, 10 and 16 positions. The nuclear relaxation results indicate that the spin label groups on the stearates are located nearer to the membrane exterior than the analogous positions of the unlabeled phospholipid acyl chains. In addition, the spin label groups of the hydrophobic ions and long chain amphiphiles are located near the acyl chain methylene immediately adjacent to the carboxyl group. The relative polarities, determined by the EPR technique, are consistent with the nuclear relaxation results. This information, when combined with information on their electrical properties, allows for an assessment of the conformation and position of these voltage sensitive probes in membranes.  相似文献   

18.
A new approach for site-directed placement of nitroxide spin labels in chemically synthesized peptides and proteins is described. The scheme takes advantage of a novel diaminopropionic acid scaffold to independently control backbone and side chain elongation. The result is a spin-labeled side chain, referred to as Dap-SL, in which an amide bond forms a linker between the nitroxide and the peptide backbone. The method was demonstrated in a series of helical peptides. Circular dichroism and nuclear magnetic resonance showed that Dap-SL introduces only a minor perturbation in the helical structure. The electron paramagnetic resonance spectrum of the singly labeled species allowed for determination of the spin label rotational correlation time and suggests that the Dap-SL side chain is more flexible than the modified Cys side chain frequently used in site-directed spin label studies. Spectra of the doubly labeled peptides indicate a mixture of 3(10)-helix and alpha-helix, which parallels findings from previous studies. The scheme demonstrated here offers a fundamentally new approach for introducing spin labels into proteins and promises to significantly extend biophysical investigations of large proteins and receptors. In addition, the technique is readily modified for incorporation of any biophysical probe.  相似文献   

19.
Abstract

The EPR spectra of the preparations produced by spin labeling of the carbohydrate parts in monoclonal IgM and normal IgG with 2,2,6,6-tetramethyl-4-aminopiperidine-1-oxyl as the spin label indicate the existence of a rapid spin-spin exchange interaction between two spin labels. In the case of spin-labeled IgM, the carrier of such a spectrum is shown to be a glycopeptide noncovalently bound to IgM; it includes two spin labels and may be detached from the macromolecule by a combination of dialysis and gel filtration.  相似文献   

20.
The spin labels, 5-doxylstearate, 12-doxylstearate, 16-doxylstearate and 1-oxyl-2,2,6,6-tetramethyl-4-dodecylphospiperidine, have been incorporated into dodecylphospocholine micelles and mixed dodecylphosphocholine/ glucagon micelles. The EPR spectral parameters for the different spin labels and the 1H- and 13C-NMR relaxation rates for nuclei of the detergent molecules indicated that inclusion of up to one spin label molecule per micelle had little influence on the spatial organization of the micelles. Furthermore, the location and environment of the spin labels in the dodecylphosphocholine micelles were not noticeably affected by the addition of glucagon and the 1H-NMR spectra observed for glucagon in mixed spin label/deuterated dodecylphosphocholine/glucagon micelles showed that the different spin labels had essentially no effect on the conformation of glucagon. Approximate spatial locations within the micelle for the nitroxide moieties of the different spin labels were determined from the NMR relaxation rates observed for different nuclei of dodecylphosphocholine. On this basis, the line broadening of individually assigned glucagon 1H-NMR lines by the different spin labels was used to determine the approximate orientation of the polypeptide chain with respect to the micelle surface. Overall, the data indicate that the glucagon backbone runs roughly parallel to the micelle surface, with the depth of immersion adjusted so that polar and apolar side chains can be oriented towards the surface or interior of the micelle, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号