首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R N Akhmerov 《Ontogenez》1986,17(5):516-524
A marked increase in the rate of mitochondrial respiration, not coupled with ADP phosphorylation, was noted during the transformation of newborn poikilothermic animals into homoeothermic ones in the experiment on the rat tissue homogenates. Uncoupled respiration, as well as coupled one, is realized by the mitochondrial respiration chain, is observed upon oxidation of NADH, succinate, ascorbate and is expressed by a high rate of O2 consumption in the absence of added ADP. During ontogenesis, uncoupled respiration is activated to a greater extent in the heart and skeletal muscle and to a lesser extent in the liver and brown fat. The rates of phosphorylating oxidation of different substrates in tissue homogenates of animals from various age groups differ insignificantly. It is supposed that the postnatal development of homoeothermism in rats is ensured by the formation in many tissues of a system of uncoupled respiration, which takes part in heat production without preliminary ATP synthesis.  相似文献   

2.
Neuromodulatory delta sleep inducing peptide (DSIP) seems to be implicated in the attenuation of stress-induced pathological metabolic disturbances in various animal species and human beings. Mitochondria, as cell organelles, are considered especially sensitive to stress conditions. In this work, the influence of DSIP and Deltaran((R))-a recently developed product based upon DSIP-on processes of oxidative phosphorylation and ATP production in rat brain mitochondria and rat brain homogenates was studied. A polarographic measurement of oxygen consumption was applied to evaluate the impact of DSIP on maximal rates of mitochondrial respiration and coupling of respiration to ATP production. We provide evidence that DSIP affected the efficiency of oxidative phosphorylation on isolated rat brain mitochondria. This peptide significantly increased the rate of phosphorylated respiration V3, while the rate of uncoupled respiration V(DNP) remaining unchanged. It enhanced the respiratory control ratio RCR and the rate of ADP phosphorylation. DSIP and Deltaran exhibited the same action in rat brain homogenates. We also examined the influence of DSIP under hypoxia when mitochondrial respiratory activity is altered. In rats subjected to hypoxia, we detected a significant stress-mediated reduction of V3 and ADP/t values. Pretreatment of rats with DSIP at the dose of 120 microgram/kg (i.p.) prior to their subjection to hypoxia completely inhibited hypoxia-induced reduction of mitochondrial respiratory activity. The revealed capacity of DSIP to enhance the efficiency of oxidative phosphorylation found in vitro experiments could contribute to understanding pronounced stress protective and antioxidant action of this peptide in vivo.  相似文献   

3.
NAD(P)H fluorescence, mitochondrial membrane potential and respiration rate were measured and manipulated in isolated liver cells from fed and starved rats in order to characterize control of mitochondrial respiration and phosphorylation. Increased mitochondrial NADH supply stimulated respiration and this accounted for most of the stimulation of respiration by vasopressin and extracellular ATP. From the response of respiration to NADH it was estimated that the control coefficient over respiration of the processes that supply mitochondrial NADH was about 0.15-0.3 in cells from fed rats. Inhibition of the ATP synthase with oligomycin increased the mitochondrial membrane potential and decreased respiration in cells from fed rats, while the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone had the opposite effect. There was a unique relationship between respiration and membrane potential irrespective of the ATP content of the cells indicating that phosphorylation potential controls respiration solely via phosphorylation (rather than by controlling NADH supply). From the response of respiration to the mitochondrial membrane potential (delta psi M) it was estimated that the control coefficients over respiration rate in cells from fed rats were: 0.29 by the processes that generate delta psi M, 0.49 by the process of ATP synthesis, transport and consumption, and 0.22 by the processes that cycle protons across the inner mitochondrial membrane other than via ATP synthesis (e.g. the passive proton leak). Control coefficients over the rate of mitochondrial ATP synthesis were 0.23, 0.84 and -0.07, respectively, by the same processes. The control distribution in cells from starved rats was similar.  相似文献   

4.
The purpose of the present study was to visualize myoglobin-facilitated oxygen delivery to mitochondria at a critical mitochondrial oxygen supply in single isolated cardiomyocytes of rats. Using the autofluorescence of mitochondrial reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), the mitochondrial oxygen supply was imaged from approximately 1.4 microm inside the cell surface at a subcellular spatial resolution. Significant radial gradients of intracellular oxygenation were produced by superfusing the cell suspension with a mixed gas containing 2-4% oxygen while stimulating mitochondrial respiration with an uncoupler of oxidative phosphorylation. Augmentation of the NAD(P)H fluorescence started from the core of the cell (anoxic core) and progressively expanded toward the plasma membrane, as the extracellular Po(2) was lowered. Inactivation of cytosolic myoglobin by 5 mM NaNO(2) significantly enlarged such anoxic regions. Nitrite affected neither mitochondrial respiration in uncoupled cells nor the relationship between Po(2) and the NAD(P)H fluorescence in coupled cells. Thus we conclude that myoglobin significantly facilitates intracellular oxygen transport at a critical level of mitochondrial oxygen supply in single cardiomyocytes.  相似文献   

5.
The objective of this investigation was to examine liver mitochondrial functions in rats exposed to 0.4 atm for 0, 5 and 27 days, Liver homogenates were fractionated by rate-zonal centrifugation utilizing iso-osmotic Ficoll-sucrose gradients; this eliminates loss of large and small mitochondria and makes possible the separation of mitochondria into subpopulations according to sedimentation coefficient. After pooling all mitochondrial fractions for obtaining composite determinations of the entire population, large diminutions in states 3 and 4 respiration (succinate as substrate) were obtained in day-5 and day-27 rats but no changes were evident with regard to ADP:O ratios, respiratory control indices or the capacity for in vitro protein synthesis. By examination of subpopulations of mitochondria, it was found that mitochondria are heterogeneous with regard to ADP:O ratios, respiratory control indices, states 3 and 4 respiration and the capacity for in vitro protein synthesis. The heterogeneity for each of these parameters was altered in day-5 and day-27 animals. Although states 3 and 4 respiration were depressed throughout the entire mitochondrial population for day-5 and day-27 rats, a subpopulation of mitochondria from day-27 rats showed respiratory control indices and ADP:O ratios which were higher than any subpopulation of mitochondria of either day-5 or day-0 animals.  相似文献   

6.
DNA strand breaks that occur after irradiation activate the repair enzyme adenosine diphosphoribosyl transferase, which consumes NAD as a substrate and causes depletion first of neuronal NAD and then of the ATP pool. This is considered to be the crucial link in the mechanism underlying the cerebral radiation syndrome (CRS). In this study, two ways to correct the CRS metabolically were examined: (a) prevention of depletion of NAD after irradiation by administration of the enzyme inhibitor nicotinamide and (b) shunting the NAD-dependent oxidative phosphorylation pathway of ATP resynthesis by administration of a substrate of NAD-independent oxidation, succinate. Cerebral lesions induced by radiation were modeled by irradiation of rats or rat brain homogenates with 150 Gy of X rays. The manifestations of CRS in rats (excitement, convulsions, etc.) closely resembled those seen after acute hypoxia. In brain homogenates, pyruvate tetrazolium-reductase activity decreased after irradiation and could be corrected by addition of NAD after irradiation. Succinate tetrazolium-reductase activity was not affected by irradiation. Oxygen consumption by brain homogenates after irradiation in vitro and in situ decreased, as did oxygen consumption by rats in vivo after cranio-caudal irradiation. Administration of nicotinamide or succinate prevented both the postirradiation decrease in respiration (in both rats in vivo and brain homogenates in vitro) and the development of cerebral radiation syndrome. These results help to clarify the mechanisms underlying CRS and its metabolic correction.  相似文献   

7.
In unwashed mitochondria the oxidation of L-lactate (with NAD+) proceeds in presence of the added lactate dehydrogenase. The respiration is characterized by the high rate in state 4 and is stimulated by ADP. This process takes place in unwashed mitochondria and homogenate of the heart in absence of added lactate dehydrogenase. Oxidation of lactate with NAD+ is inhibited by rotenone. It has been also revealed that the oxidation of glutamate is insufficiently altered in presence of lactate (with NAD+) in unwashed mitochondria as compared with the washed ones. It is supposed that the stimulating effect of lactate with NAD+ on the mitochondria respiration is not so much a result of the membrane-damaged action as a result of oxidation of lactate dehydrogenase reaction products: phosphorylative oxidation of pyruvate and nonconjugated oxidation of NADH. Utilization of these products takes place in the main respiratory chain, including its first stage.  相似文献   

8.
A simple in situ model of alamethicin-permeabilized isolated rat liver mitochondria was used to investigate the channeling of NADH between mitochondrial malate dehydrogenase (MDH) and NADH:ubiquinone oxidoreductase (complex I). Alamethicin-induced pores in the mitochondrial inner membrane allow effective transport of low molecular mass components such as NAD+/NADH but not soluble proteins. Permeabilized mitochondria demonstrate high rates of respiration in the presence of malate/glutamate and NAD+ due to coupled reaction between MDH and complex I. In the presence of pyruvate and lactate dehydrogenase, an extramitochondrial competitive NADH utilizing system, respiration of permeabilized mitochondria with malate/glutamate and NAD+ was completely abolished. These data are in agreement with the free diffusion of NADH and do not support the suggestion of direct channeling of NADH from MDH to complex I.  相似文献   

9.
Developmental changes in energy metabolism of primary hippocampal cell cultures from newborn rats were investigated during the first 3 weeks. These changes were measured by intensity of and number of cells exhibiting NAD(P)H fluorescence in response to NMDA-induced activation of neuronal activity. We observed gradual changes of stimulation-evoked NAD(P)H signaling over the first 3 weeks, such that at day 7 and 16, this stimulation is minimal, while at 5 and 12 days, it is maximal. These results describe a biphasic pattern that was similar to earlier findings from experiments investigating developmental changes in population spike amplitudes or glutamate release in young rats. Inhibition of mitochondrial respiration by KCN revealed that the NMDA-evoked stimulation of energy metabolism is mainly due to increased glycolytic activity.  相似文献   

10.
An NAD-linked lactate dehydrogenase (LDH) in a crude mitochondrial fraction obtained from Tetrahymena homogenates was previously reported by this laboratory. This fraction contains the NADH and succinate oxidase system as well as the mitochondrial cytochromes and carries out oxidative phosphorylation. The preparation catalyzes the oxidation of D- and L-lactate linked only to certain analogs of NAD; it has not been possible to demonstrate NAD-dependent D- or L-lactate oxidation nor is there any evidence that either of these enzymes is a flavoprotein as indicated by their inability to reduce directly certain artificial electron acceptors. A lactate racemase is not present.  相似文献   

11.
The effects of glucagon on the respiratory function of mitochondria in situ were investigated in isolated perfused rat liver. Glucagon at the concentrations higher than 20 pM and cyclic AMP (75 microM) stimulated hepatic respiration, and shifted the redox state of pyridine nucleotide (NADH/NAD) in mitochondria in situ to a more reduced state as judged by organ fluorometry and beta-hydroxybutyrate/acetoacetate ratio. The organ spectrophotometric study revealed that glucagon and cyclic AMP induced the reduction of redox states of cytochromes a(a3), b and c+c1. Atractyloside (4 micrograms/ml) abolished the effects of glucagon on these parameters and gluconeogenesis from lactate. These observations suggest that glucagon increases the availability of substrates for mitochondrial respiration, and this alteration in mitochondrial function is crucial in enhancing gluconeogenesis.  相似文献   

12.
The lactate/pyruvate oxidation (Qo2) ratio was 1.21 ± 0.04 for heart homogenates as compared to 0.92 ± 0.05 for white quadriceps muscle homogenates during state 3 respiration. The extra lactate Qo2 could be accounted for by the oxidation of additional NADH2 from lactate, assuming the oxidation of 12 H+/lactate and 10 H+/pyruvate. A high correlation of 0.92 was observed between extra lactate Qo2 and activity of heart-type LDH isozyme. This finding and the mitochondrial location of heart-type isozyme (1) suggests the extra lactate Qo2 in heart homogenates could represent the oxidation of NADH2 formed from lactate by the mitochondria.  相似文献   

13.
The role of calcium in the control of respiration by the mitogen concanavalin A (ConA) was investigated in rat thymocytes. ConA induced an increase in both mitochondrial respiration and the mitochondrial calcium pool. The stimulation of respiration was shown to be independent of the increase in mitochondrial calcium: the calcium pool declined after 3 min, whereas the respiration increase was persistent, and was not affected by depletion of the calcium pool or by buffering intracellular Ca2+ transients with quin2. The mitogen phytohaemagglutinin stimulated respiration to the same extent as ConA, but did not increase the mitochondrial calcium pool. In addition, respiration was unaffected by changes in the mitochondrial calcium pool induced by increasing or decreasing extracellular calcium. These results indicate that control of respiration is not located in the Ca2+-sensitive mitochondrial dehydrogenases. The ConA-induced increase in respiration could be blocked by oligomycin, suggesting control by cytoplasmic ATP turnover, and was not associated with detectable changes in NAD(P)H fluorescence, indicating a balance between increased electron transfer and increased supply of reduced substrates.  相似文献   

14.
Chicken liver mitochondria were isolated in relatively pure form as indicated by electron microscopy and marker enzyme assay. The rate of respiration, respiratory control index and ADP/O ratios with several different substrates indicated that chicken liver mitochondria are more uncoupled than rat liver mitochondria. Chickens have ten-fold higher malate concentrations in liver than do rats, 2-oxoglutarate was also more abundant in chicken livers. Fasted birds had a five-fold increase in beta-hydroxybutyrate as compared with fed birds; whereas malate and lactate concentrations decreased. Fasted birds had increased levels of isocitrate dehydrogenase (NADP dependent) and lactate dehydrogenase in the cytosol, and increased malate dehydrogenase (NAD dependent), isocitrate dehydrogenase (NADP dependent) and malic enzyme activities in the mitochondria.  相似文献   

15.
The Warburg effect describes an increase in aerobic glycolysis and enhanced lactate production in cancer cells. Lactate dehydrogenase A (LDH-A) regulates the last step of glycolysis that generates lactate and permits the regeneration of NAD(+). LDH-A gene expression is believed to be upregulated by both HIF and Myc in cancer cells to achieve increased lactate production. However, how oncogenic signals activate LDH-A to regulate cancer cell metabolism remains unclear. We found that the oncogenic receptor tyrosine kinase FGFR1 directly phosphorylates LDH-A. Phosphorylation at Y10 and Y83 enhances LDH-A activity by enhancing the formation of active, tetrameric LDH-A and the binding of LDH-A substrate NADH, respectively. Moreover, Y10 phosphorylation of LDH-A is common in diverse human cancer cells, which correlates with activation of multiple oncogenic tyrosine kinases. Interestingly, cancer cells with stable knockdown of endogenous LDH-A and rescue expression of a catalytic hypomorph LDH-A mutant, Y10F, demonstrate increased respiration through mitochondrial complex I to sustain glycolysis by providing NAD(+). However, such a compensatory increase in mitochondrial respiration in Y10F cells is insufficient to fully sustain glycolysis. Y10 rescue cells show decreased cell proliferation and ATP levels under hypoxia and reduced tumor growth in xenograft nude mice. Our findings suggest that tyrosine phosphorylation enhances LDH-A enzyme activity to promote the Warburg effect and tumor growth by regulating the NADH/NAD(+) redox homeostasis, representing an acute molecular mechanism underlying the enhanced lactate production in cancer cells.  相似文献   

16.
AimsWe investigated the in vitro effects of 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, which accumulate in tissues of patients affected by mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies, on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats.Main methodsWe measured the respiratory parameters state 4, state 3, respiratory control ratio (RCR) and ADP/O ratio by the rate of oxygen consumption, as well as the mitochondrial membrane potential and the matrix NAD(P)H levels in the presence of the fatty acids.Key findingsWe found that 3HDA, 3HTA and 3HPA markedly increased state 4 respiration and diminished the RCR using glutamate plus malate or succinate as substrates. 3HTA and 3HPA also diminished the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, 3HTA decreased state 3 respiration using glutamate/malate, but not pyruvate/malate or succinate as substrates. Our data indicate that the long-chain 3-hydroxy fatty acids that accumulate in LCHAD/MTP deficiencies act as uncouplers of oxidative phosphorylation, while 3HTA also behaves as a metabolic inhibitor.SignificanceIt is presumed that impairment of brain energy homeostasis caused by these endogenous accumulating compounds may contribute at least in part to the neuropathology of LCHAD/MTP deficiencies.  相似文献   

17.
Several lines of evidence show a close association between plasma membrane Na,K-ATPase and mitochondrial respiration. Extending the observation in human erythrocyte membrane (6), Na,K-ATPase activity has been shown to be elevated in kidney microsomal preparations from protein- and energy-malnourished rats (10). Kidney mitochondrial respiration was studied in these rats under various conditions of assay. Sucrose was used as a modifier of mitochondrial morphology and volume to study its effect on these mitochondria. Mitochondrial state 3 respiration was increased by 35% in protein-deficient rats (P less than 0.02). Vmax(ADP) of state 3 respiration was increased by about 47% in protein- as well as energy-restricted rats. Mitochondria from protein- and energy-deficient rats were more tightly coupled as compared to those from control group. Km apparent for (ADP) and (Pi) were elevated in protein- and energy-malnourished rats. The magnitude of increase was much more in energy-deficient rats. Morphological differences between the mitochondria from two dietary manipulations were reflected in differences in the responses of state 3 respiration, Km(ADP), state 4 respiration, and respiratory control ratios to changing sucrose concentrations. This increase in mitochondrial respiration parallels the increased Na,K-ATPase activity in these rats. Increased Km (ADP and Pi) for mitochondrial respiration are perhaps in response to increased availability of these metabolites in the cytosol. The sucrose effect, in addition, distinguishes the morphological differences in mitochondrial membrane due to protein or energy deficiencies. In conclusion, these results, to a great extent, support an association between the activity of Na,K-ATPase and mitochondrial respiration. The study of mechanism(s) which could contribute to the enhancement of mitochondrial respiration will be of general importance to the understanding of regulation of mitochondrial oxidative phosphorylation, and is of particular interest to us.  相似文献   

18.
Rat exposure to 60% O(2) (hyper-60) or 85% O(2) (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O(2). The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH(2)), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH(2) and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (V(max1)) and complex III-mediated DQH(2) oxidation (V(max2)) increased by ~140 and ~180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, V(max1) increased by ~80%, with no effect on V(max2). Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ~50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ~90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O(2) observed in hyper-85 rats.  相似文献   

19.
This study aimed at determining whether glucose-insulin-potassium (GIK) solutions modify the NADH/NAD(+) ratio during postischemic reperfusion and whether their cardioprotective effect can be attributed to this change in part through reduction of the mitochondrial reactive oxygen species (ROS) production. The hearts of 72 rats were perfused with a buffer containing glucose (5.5 mM) and hexanoate (0.5 mM). They were maintained in normoxia for 30 min and then subjected to low-flow ischemia (0.5% of the preischemic coronary flow for 20 min) followed by reperfusion (45 min). From the beginning of ischemia, the perfusate was subjected to various changes: enrichment with GIK solution, enrichment with lactate (2 mM), enrichment with pyruvate (2 mM), enrichment with pyruvate (2 mM) plus ethanol (2 mM), or no change for the control group. Left ventricular developed pressure, heart rate, coronary flow, and oxygen consumption were monitored throughout. The lactate/pyruvate ratio of the coronary effluent, known to reflect the cytosolic NADH/NAD(+) ratio and the fructose-6-phosphate/dihydroxyacetone-phosphate (F6P/DHAP) ratio of the reperfused myocardium, were evaluated. Mitochondrial ROS production was also estimated. The GIK solution improved the recovery of mechanical function during reperfusion. This was associated with an enhanced cytosolic NADH/NAD(+) ratio and reduced mitochondrial ROS production. The cardioprotection was also observed when the hearts were perfused with fluids known to increase the cytosolic NADH/NAD(+) ratio (lactate, pyruvate plus ethanol) compared with the other fluids (control and pyruvate groups). The hearts with a high mechanical recovery also displayed a low F6P/DHAP ratio, suggesting that an accelerated glycolysis rate may be responsible for increased cytosolic NADH production. In conclusion, the cardioprotection induced by GIK solutions could occur through an increase in the cytosolic NADH/NAD(+) ratio, leading to a decrease in mitochondrial ROS production.  相似文献   

20.
Propionic acidemia is caused by lack of propionyl-CoA carboxylase activity. It is biochemically characterized by accumulation of propionic (PA) and 3-hydroxypropionic (3OHPA) acids and clinically by severe encephalopathy and cardiomyopathy. High urinary excretion of maleic acid (MA) and 2-methylcitric acid (2MCA) is also found in the affected patients. Considering that the underlying mechanisms of cardiac disease in propionic acidemia are practically unknown, we investigated the effects of PA, 3OHPA, MA and 2MCA (0.05–5 mM) on important mitochondrial functions in isolated rat heart mitochondria, as well as in crude heart homogenates and cultured cardiomyocytes. MA markedly inhibited state 3 (ADP-stimulated), state 4 (non-phosphorylating) and uncoupled (CCCP-stimulated) respiration in mitochondria supported by pyruvate plus malate or α-ketoglutarate associated with reduced ATP production, whereas PA and 3OHPA provoked less intense inhibitory effects and 2MCA no alterations at all. MA-induced impaired respiration was attenuated by coenzyme A supplementation. In addition, MA significantly inhibited α-ketoglutarate dehydrogenase activity. Similar data were obtained in heart crude homogenates and permeabilized cardiomyocytes. MA, and PA to a lesser degree, also decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and Ca2+ retention capacity, and caused swelling in Ca2+-loaded mitochondria. Noteworthy, ΔΨm collapse and mitochondrial swelling were fully prevented or attenuated by cyclosporin A and ADP, indicating the involvement of mitochondrial permeability transition. It is therefore proposed that disturbance of mitochondrial energy and calcium homeostasis caused by MA, as well as by PA and 3OHPA to a lesser extent, may be involved in the cardiomyopathy commonly affecting propionic acidemic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号