首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
小麦数量性状分子标记的研究进展   总被引:2,自引:0,他引:2  
小麦的许多重要经济性状是受多基因控制的数量性状。综述了近年来小麦QTL的研究进展,包括QTL定位原理、研究涉及的性状、QTL分布情况、贡献率、数据统计分析使用的方法和应用软件等,列举了小麦重要农艺性状QTL在育种中的应用实例,分析了小麦QTL分子标记的发展和应用前景。  相似文献   

2.
蔬菜作物重要农艺性状相关基因分离的研究进展   总被引:1,自引:0,他引:1  
本文简要综述了蔬菜作物基因分离的主要方法和近年来蔬菜作物重要农艺性状相关基因分离的研究进展,指出在分离蔬菜作物目的基因的研究中,必须加强基因分离的原创性;充分利用现有的研究条件,做到基因分离与功能基因组研究相互协调,均衡发展,从而为我国蔬菜作物开展分子育种研究奠定基础。  相似文献   

3.
概述了分子标记技术在苜蓿系统发育、种质资源、遗传育种以及根瘤菌的特异性等方面的国内外研究进展,简述了几种分子标记技术在苜蓿各研究领域的作用和贡献,并展望了分子标记技术在中国苜蓿研究中的广泛应用前景。  相似文献   

4.
大豆重要农艺性状的QTL分析   总被引:55,自引:0,他引:55  
应用栽培大豆科丰1号(♀)和南农1138-2(♂)杂交得到的F9代重组自交系(RILs)群体(201个家系),构建了含302遗传标记、覆盖2363.8cM、由22个连锁群组成的遗传连锁图谱。采用区间作图法,对该群体的主要农艺性状的调查数据进行QTL分析,表明与开花期、成熟期、株高、主茎节数、每节荚数、倒状性、种子重、产量、蛋白质和含油量等10个重要农艺性状连锁的QTL位点34个,每个数量性状的遗传变异是由多个QTL位点决定的。与产量有关的农艺性状的一些QTL集中在几个连锁群上。  相似文献   

5.
干旱胁迫是严重限制全球农业生产的环境因素,造成了牧草大量减产.综述了4种重要苜蓿在干旱胁迫下的相关基因以及抗旱育种方面的主要进展,并对苜蓿耐旱性研究的前景及存在问题进行了讨论.提出可充分利用生物技术,挖掘抗旱相关基因资源,在豆科模式植物蒺藜苜蓿中验证基因功能,阐明苜蓿抗旱应答网络机制,进而从黄花苜蓿中克隆抗旱相关基因,...  相似文献   

6.
亚麻作为一种经济作物,综合利用价值高,亚麻籽丰富的营养成分和活性物质以及优质的纤维品质使得亚麻越来越受到青睐,因而培育高品质亚麻品种成为当前的育种目标.传统育种方法因周期长、选择有限等原因限制了育种进程,随着分子生物学和分子标记等技术的发展,传统育种手段结合分子育种在一定程度满足了育种需求.文章对分子标记在亚麻研究中的...  相似文献   

7.
作物分子标记辅助选择的研究进展、影响因素及其发展策略   总被引:14,自引:0,他引:14  
随着分子标记技术及其检测手段的发展,开发和应用成本的降低,分子标记辅助选择(MAS)在作物育种上的应用优势日益明显。本文综述了近年来MAS在基因聚合、基因转移和数量性状改良上的研究进展。总结了MAS的影响因素,包括标记与基因间的距离、目标性状的遗传率、群体大小、所用分子标记的数目、类型和相位等。并提出育种和定位同步进行、选择合适分子标记类型和数量、简化DNA提取方法、背景选择的逐步选择法、确定合适选择方案等MAS发展策略。  相似文献   

8.
分子标记技术发展迅猛,正日益成为牧草种质资源的辅助研究手段,其研究技术也日趋成熟。概述分子标记应用在产量、品质、抗逆性和抗病虫等牧草重要性状上的研究进展,分析牧草种质资源重要性状分子标记中存在的问题,并对其应用前景进行展望,以期为今后我国在牧草种质资源方面进一步开展相关研究提供参考。  相似文献   

9.
作物抗旱相关分子标记及其辅助选择的研究进展   总被引:11,自引:0,他引:11  
分子标记辅助选择育种给作物抗旱育种提供了新的途径。本介绍了国内外在小麦、玉米、水稻、大豆等重要农作物抗旱相关分子标记方面的研究进展。对作物抗旱相关QTL分子标记辅助育种进行了探讨,并对其发展策略提出了一些思考。  相似文献   

10.
棉花高品质纤维性状QTLs的分子标记筛选及其定位   总被引:25,自引:1,他引:25  
利用7235、TM-1亲本(P1、P2),以及(7235×TM-1)F1、F2(南京和美国2个环境)与F23(南京和海南2个环境)家系群体,根据F2与F23的纤维品质性状表现,构建了纤维强度、细度与长度的极值DNA混合池,通过221对SSR引物、1840个RAPD引物对亲本和极值DNA混合池筛选,共得到了13个多态性标记,其中8个标记可能与高强有关,1个标记与低强有关;3个标记与麦克隆值有关;1个与绒长有关.进一步通过F2分离群体检测,连锁分析表明与高强有关的8个标记(2个SSR标记和6个RAPD标记)紧密连锁,覆盖15.5cM.这一高强纤维的QTL,4个环境中均以FSR1933为最近,相距不超过0.6cM,能解释35%的F2变异,53.8%的F23的表型变异,是目前纤维强度单个QTL效应最大的,多个环境下稳定,可以直接用于标记辅助育种.单体测验表明,该在棉花的第10染色体上.麦克隆值的一个主效QTL标记FMR1603,在F2中能解释7.8%的变异,在F23中能解释25.4%的变异,同样表现环境稳定.纤维长度的一个标记FLR11550,在3个环境中预测到,最大能解释9.5%  相似文献   

11.
Amylase was found in high activity (193 international units per milligram protein) in the tap root of alfalfa (Medicago sativa L. cv. Sonora). The activity was separated by gel filtration chromatography into two fractions with molecular weights of 65,700 (heavy amylase) and 41,700 (light amylase). Activity staining of electrophoretic gels indicated the presence of one isozyme in the heavy amylase fraction and two in the light amylase fraction. Three amylase isozymes with electrophoretic mobilities identical to those in the heavy and the light amylase fractions were the only amylases identified in crude root preparations. Both heavy and light amylases hydrolyzed amylopectin, soluble starch, and amylose but did not hydrolyze pullulan or β-limit dextrin. The ratio of viscosity change to reducing power production during starch hydrolysis was identical for both alfalfa amylase fractions and sweet potato β-amylase, while that of bacterial α-amylase was considerably higher. The identification of maltose and β-limit dextrin as hydrolytic end-products confirmed that these alfalfa root amylases are all β-amylases.  相似文献   

12.
Mining elite genes within rice landraces is of importance for the improvement of cultivated rice. An association mapping for 12 agronomic traits was carried out using a core collection of rice consisting of 150 landraces (Panel 1) with 274 simple sequence repeat (SSR) markers, and the mapping results were further verified using a Chinese national rice micro-core collection (Panel 2) and a collection from a global molecular breeding program (Panel 3). Our results showed that (1) 76 significant (P<0.05) trait-marker associations were detected using mixed linear model (MLM) within Panel 1 in two years, among which 32% were identical with previously mapped QTLs, and 11 significant associations had >10% explained ratio of genetic variation; (2) A total of seven aforementioned trait-marker associations were verified within Panel 2 and 3 when using a general linear model (GLM) and 55 SSR markers of the 76 significant trait-marker associations. However, no significant trait-marker association was found to be identical within three panels when using the MLM model; (3) several desirable alleles of the loci which showed significant trait-marker associations were identified. The research provided important information for further mining these elite genes within rice landraces and using them for rice breeding.  相似文献   

13.
Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding.  相似文献   

14.
Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.  相似文献   

15.
包劲松  夏英武 《植物学报》1999,16(4):352-358
本文综述了水稻淀粉合成的分子生物学研究的最新进展,主要内容是参与淀粉合成的酶鉴定及其基因表达调控,也介绍了对这些酶的遗传操作改良稻米淀粉品质等内容。  相似文献   

16.
水稻淀粉合成的分子生物学研究进展   总被引:19,自引:2,他引:19  
本文综述了水稻淀粉合成的分子生物学研究的最新进展,主要内容是参与淀粉合成的酶鉴定及其基因表达调控,也介绍了对这些酶的遗传操作改良稻米淀粉品质等内容  相似文献   

17.
Genes that regulate flowering time play crucial roles in plant development and biomass formation. Based on the cDNA sequence of Medicago truncatula (accession no. AY690425), the LFY gene of alfalfa was cloned. Sequence similarity analysis revealed high homology with FLO/LFY family genes of other plants. When fused to the green fluorescent protein, MsLFY protein was localized in the nucleus of onion (Allium cepa L.) epidermal cells. The RT-qPCR analysis of MsLFY expression patterns showed that the expression of MsLFY gene was at a low level in roots, stems, leaves and pods, and the expression level in floral buds was the highest. The expression of MsLFY was induced by GA3 and long photoperiod. Plant expression vector was constructed and transformed into Arabidopsis by the agrobacterium-mediated methods. PCR amplification with the transgenic Arabidopsis genome DNA indicated that MsLFY gene had integrated in Arabidopsis genome. Overexpression of MsLFY specifically caused early flowering under long day conditions compared with non-transgenic plants. These results indicated MsLFY played roles in promoting flowering time.  相似文献   

18.
Exposure of intact alfalfa nodules to 15N2 showed that in bacteroids the greatest flow of 15N was to NH3. Label was also detected in glutamic acid, aspartic acid, and asparagine (Glu, Asp and Asn), but at far lower levels. In the host plant cytosols, more 15N was incorporated into Asn than into other compounds. Detached nodules were also used to study the metabolic pathway of N assimilation after exposure to 15N2 or vacuum infiltration with (15NH4)2SO4 in the presence or absence of different inhibitors of nitrogen assimilation: methionine sulfoximine (MSO), azaserine (AZA), or amino-oxyacetate (AOA). Treatment with MSO, an inhibitor of glutamine synthetase (GS), inhibited the flow of the label to glutamine (Gln)-amide, resulting in subsequently decreased label in Asnamide. Aza, which inhibits the formation of Glu from Gln by glutamate synthase (GOGAT), enhanced the labeling of the amide groups of both Gln and Asn, while that of Asn-amino decreased. When AOA was used to block the transamination reaction very little label was found in Asp and Asn-amino. The results are consistent with the role of GS/GOGAT in the cytosol for the assimilation of NH3 produced by N2 fixation in the bacteroids of alfalfa nodules. Asn, a major nitrogen transport compound in alfalfa, is mainly synthesized by a Gln-dependent amidation of Asp, according to feeding experiments using the 15N-labeled amide group of glutamine. Data from 15NH4+ feeding support some direct amidation of Asp to form Asn.  相似文献   

19.
20.
Alfalfa (Medicago sativa) is an important forage crop worldwide. Apart from cultivated fields, alfalfa is also found along roadsides and in natural and semi-natural habitats. However, little information is available on the establishment capabilities of alfalfa in noncultivated areas and the potential of these founding populations to become feral. Some crop species have not lost all their wild characteristics during the domestication process and with several inherent traits favoring weediness, alfalfa could be one among those that can become feral. There is great interest in the feral potential of alfalfa, particularly due to the concerns that feral plants could act as genetic bridges and facilitate novel trait movement at the landscape level. Alfalfa is the first perennial, insect-pollinated crop to be genetically engineered and approved for unconfined release into the environment. This review investigates and compiles information in the literature that reveals the life history components that can influence ferality in alfalfa. Characteristics that can contribute to ferality in alfalfa include high genetic diversity, perenniality, quick regrowth potential, persistence, symbiotic nitrogen fixation, deep tap root system, drought and cold tolerance, and seed dormancy. With these traits, alfalfa is equipped to invade and dominate unmanaged habitats. Feral alfalfa populations can and will act as bridges for long-distance gene flow and facilitate the adventitious presence of novel traits in the environment. As such, feral populations will become a potential barrier for achieving coexistence of transgenic and nontransgenic alfalfa fields. Implications of ferality, including gene flow and hybridization with compatible wild relatives are also discussed in detail. This review serves as a resource for environmental risk assessment for the release of alfalfa containing novel traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号