首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus can utilize ferric hydroxamates as a source of iron under iron-restricted growth conditions. Proteins involved in this transport process are: FhuCBG, which encodes a traffic ATPase; FhuD2, a post-translationally modified lipoprotein that acts as a high affinity receptor at the cytoplasmic membrane for the efficient capture of ferric hydroxamates; and FhuD1, a protein with similarity to FhuD2. Gene duplication likely gave rise to fhuD1 and fhuD2. While the genomic locations of fhuCBG and fhuD2 in S. aureus strains are conserved, both the presence and the location of fhuD1 are variable. The apparent redundancy of FhuD1 led us to examine the role of this protein. We demonstrate that FhuD1 is expressed only under conditions of iron limitation through the regulatory activity of Fur. FhuD1 fractions with the cell membrane and binds hydroxamate siderophores but with lower affinity than FhuD2. Using small angle x-ray scattering, the solution structure of FhuD1 resembles that of FhuD2, and only a small conformational change is associated with ferrichrome binding. FhuD1, therefore, appears to be a receptor for ferric hydroxamates, like FhuD2. Our data to date suggest, however, that FhuD1 is redundant to FhuD2 and plays a minor role in hydroxamate transport. However, given the very real possibility that we have not yet identified the proper conditions where FhuD1 does provide an advantage over FhuD2, we anticipate that FhuD1 serves an enhanced role in the transport of untested hydroxamate siderophores and that it may play a prominent role during the growth of S. aureus in its natural environments.  相似文献   

2.
3.
Mutagenesis of group B streptococcus (GBS) with TnphoZ, a transposon designed to identify secreted protein genes, identified the gene homologues fhuD and fhuG. The encoded proteins participate in siderophore (hydroxamate)-dependent iron(III) transport in other bacterial species. Sequence analysis of the genome determined that fhuD and fhuG are members of a polycistronic operon comprised of four genes, fhuCDBG, that encode a putative ATPase, cell surface receptor and two transmembrane proteins respectively. We hypothesized that FhuD was a siderophore receptor. Western analysis of cell extracts localized FhuD to the bacterial cell membrane. Fluorescence quenching experiments determined that purified FhuD bound hydroxamate-type siderophores. FhuD displayed highest affinity for iron(III)-desferroxamine, with a K(D) (microM) = 0.05, identical to that described for FhuD2 from Staphylococcus aureus. The role of Fhu in siderophore-iron transport was also characterized. A fhu mutant, ACFhu1, was equally sensitive to the iron-dependent antibiotic streptonigrin as the wild-type strain, suggesting that ACFhu1 was not reduced for intracellular iron concentrations in the absence of exogenous siderophore. However, ACFhu1 transported significantly less siderophore-bound iron in (55)Fe accumulation assays. These data provide the first evidence of siderophore-mediated iron acquisition by GBS.  相似文献   

4.
The antibiotic albomycin is highly effective against Streptococcus pneumoniae, with an MIC of 10 ng/ml. The reason for the high efficacy was studied by measuring the uptake of albomycin into S. pneumoniae. Albomycin was transported via the system that transports the ferric hydroxamates ferrichrome and ferrioxamine B. These two ferric hydroxamates antagonized the growth inhibition by albomycin and salmycin. Cross-inhibition of the structurally different ferric hydroxamates to both antibiotics can be explained by the similar iron coordination centers of the four compounds. [(55)Fe(3+)]ferrichrome and [(55)Fe(3+)]ferrioxamine B were taken up by the same transport system into S. pneumoniae. Mutants in the adjacent fhuD, fhuB, and fhuG genes were transport inactive and resistant to the antibiotics. Albomycin, ferrichrome, ferrioxamine B, and salmycin bound to the isolated FhuD protein and prevented degradation by proteinase K. The fhu locus consisting of the fhuD, fhuB, fhuG, and fhuC genes determines a predicted ABC transporter composed of the FhuD binding lipoprotein, the FhuB and FhuG transport proteins, and the FhuC ATPase. It is concluded that active transport of albomycin mediates the high antibiotic efficacy in S. pneumoniae.  相似文献   

5.
The fhuD2 gene encodes a lipoprotein that has previously been shown to be important for the utilization of iron(III)-hydroxamates by Staphylococcus aureus. We have studied the function of the FhuD2 protein in greater detail, and demonstrate here that the protein binds several iron(III)-hydroxamates. Mutagenesis of FhuD2 identified several residues that were important for the ability of the protein to function in iron(III)-hydroxamate transport. Several residues, notably Tyr-191, Trp-197, and Glu-202, were found to be critical for ligand binding. Moreover, mutation of two highly conserved glutamate residues, Glu-97 and Glu-231, had no affect on ligand binding, but did impair iron(III)-hydroxamate transport. Interestingly, the transport defect was not equivalent for all iron(III)-hydroxamates. We modeled FhuD2 against the high resolution structures of Escherichia coli FhuD and BtuF, two structurally related proteins, and showed that the three proteins share a similar overall structure. FhuD2 Glu-97 and Glu-231 were positioned on the surface of the N and C domains, respectively. Characterization of E97A, E231A, or E97A/E231A mutants suggests that these residues, along with the ligand itself, play a cumulative role in recognition by the ABC transporter FhuBGC2. In addition, small angle x-ray scattering was used to demonstrate that, in solution, FhuD2 does not undergo a detectable change in conformation upon binding iron(III)-hydroxamates. Therefore, the mechanism of binding and transport of ligands for binding proteins within this family is significantly different from that of other well studied binding protein families, such as that represented by maltose-binding protein.  相似文献   

6.
7.
Staphylococcus aureus was shown to transport iron complexed to a variety of hydroxamate type siderophores, including ferrichrome, aerobactin, and desferrioxamine. An S. aureus mutant defective in the ability to transport ferric hydroxamate complexes was isolated from a Tn917-LTV1 transposon insertion library after selection on iron-limited media containing aerobactin and streptonigrin. Chromosomal DNA flanking the Tn917-LTV1 insertion was identified by sequencing of chromosomal DNA isolated from the mutant. This information localized the transposon insertion to a gene whose predicted product shares significant similarity with FhuG of Bacillus subtilis. DNA sequence information was then used to clone a larger fragment of DNA surrounding the fhuG gene, and this resulted in the identification of an operon of three genes, fhuCBG, all of which show significant similarities to ferric hydroxamate uptake (fhu) genes in B. subtilis. FhuB and FhuG are highly hydrophobic, suggesting that they are embedded within the cytoplasmic membrane, while FhuC shares significant homology with ATP-binding proteins. Given this, the S. aureus FhuCBG proteins were predicted to be part of a binding protein-dependent transport system for ferric hydroxamates. Exogenous iron levels were shown to regulate ferric hydroxamate uptake in S. aureus. This regulation is attributable to Fur in S. aureus because a strain containing an insertionally inactivated fur gene showed maximal levels of ferric hydroxamate uptake even when the cells were grown under iron-replete conditions. By using the Fur titration assay, it was shown that the Fur box sequences upstream of fhuCBG are recognized by the Escherichia coli Fur protein.  相似文献   

8.
One of the four operons required for cobalamin biosynthesis in Bacillus megaterium is also associated with sirohaem synthesis, and contains three genes, sirA, sirB and sirC. By undertaking functional complementation experiments and in vitro assays using recombinantly produced enzymes, we have been able to demonstrate that (1) SirA acts as a uroporphyrinogen III methyltransferase, transforming uroporphyrinogen III into precorrin-2, (2) SirC acts as an NAD(+) dehydrogenase, responsible for the oxidation of precorrin-2 into sirohydrochlorin, and (3) SirB acts as a ferrochelatase, responsible for the insertion of a ferrous ion into sirohydrochlorin to give sirohaem. Comparative sequence analysis reveals that the primary structure of SirB is highly similar to that of the cobalt chelatase involved in cobalamin biosynthesis in Bacillus megaterium, CbiX, with the exception that CbiX contains a C-terminal histidine-rich motif. Surprisingly, CbiX has been shown (using EPR) to contain a 4Fe-4S centre, a redox centre that is absent from SirB.  相似文献   

9.
The nucleotide sequence for a 1,900-base-pair region of the Escherichia coli chromosome that includes the genes fhuC and fhuD was determined. Within this sequence are two open reading frames: nucleotides 127 to 921 and nucleotides 924 to 1811. These coding regions specify a FhuC protein with an Mr of 28,423 and a mature FhuD protein with an Mr of 29,610. The deduced amino acid sequence of FhuC shows extensive homology with those of components of some bacterial transport systems which are peripheral proteins of the cytoplasmic membrane. Because the FhuD protein contains a typical signal sequence of 30 amino acids at the amino terminus and displays characteristics of a soluble protein, it may be exported into the periplasm.  相似文献   

10.
Iron is critical for virtually all forms of life. The production of high-affinity iron chelators, siderophores, and the subsequent uptake of iron–siderophore complexes are a common strategy employed by microorganisms to acquire iron. Staphylococcus aureus produces siderophores but genetic information underlying their synthesis and transport is limited. Previous work implicated the sbn operon in siderophore synthesis and the sirABC operon in uptake. Here we characterize a second siderophore biosynthetic locus in S. aureus ; the locus consists of four genes (in strain Newman these open reading frames are designated NWMN_2079–2082) which, together, are responsible for the synthesis and export of staphyloferrin A, a polycarboxylate siderophore. While deletion of the NWMN_2079–2082 locus did not affect iron-restricted growth of S. aureus , strains bearing combined sbn and NWMN_2079–2082 locus deletions produced no detectable siderophore and demonstrated severely attenuated iron-restricted growth. Adjacent to NWMN_2079–2082 resides the htsABC operon, encoding an ABC transporter previously implicated in haem acquisition. We provide evidence here that HtsABC, along with the FhuC ATPase, is required for the uptake of staphyloferrin A. The crystal structure of apo-HtsA was determined and identified a large positively charged region in the substrate-binding pocket, in agreement with a role in binding of anionic staphyloferrin A.  相似文献   

11.
The Escherichia coli iron transport system via ferrichrome belongs to the group of ATP-dependent transporters that are widely distributed in prokaryotes and eukaryotes. Transport across the cytoplasmic membrane is mediated by three proteins: FhuD in the periplasm, FhuB in the cytoplasmic membrane and FhuC (ATPase) associated with the inside of the cytoplasmic membrane. Interaction of FhuD with FhuB was studied in vitro with biotinylated synthetic 10 residue and 20–24 residue peptides of FhuB by determining the activity of β-galactosidase linked to the peptides via streptavidin. Peptides identical in sequence to only one of the four periplasmic loops (loop 2), predicted by a transmembrane model of FhuB, and peptides representing a transmembrane segment and part of the adjacent cytoplasmic loop 7 of FhuB bound to FhuD. Decapeptides were transferred into the periplasm of cells through a FhuA deletion derivative that forms permanently open channels three times as large as the porins in the outer membrane. FhuB peptides that bound to FhuD inhibited ferrichrome transport, while peptides that did not bind to FhuD did not affect transport. These data led us to propose that the periplasmic FhuD interacts with a transmembrane region and the cytoplasmic segment 7 of FhuB. The transmembrane region may be part of a pore through which a portion of FhuD inserts into the cytoplasmic membrane during transport. The cytoplasmic segment 7 of FhuB contains the conserved amino acid sequence EAA…G (in FhuB DTA…G) found in ABC transporters, which is predicted to interact with the cytoplasmic FhuC ATPase. Triggering of ATP hydrolysis by substrate-loaded FhuD may occur by physical interaction between FhuD and FhuC, which bind close to each other on loop 7. Although FhuB consists of two homologous halves, FhuB(N) and FhuB(C), the sites identified for FhuD-mediated ferrichrome transport are asymmetrically arranged.  相似文献   

12.
Summary Transport of iron(III) hydroxamates across the inner membrane into the cytoplasm ofEscherichia coli is mediated by the FhuC, FhuD and FhuB proteins and displays characteristics typical of a periplasmic-binding-protein-dependent transport mechanism. In contrast to the highly specific receptor proteins in the outer membrane, at least six different siderophores of the hydroxamate type and the antibiotic albomycin are accepted as substrates. AfhuB mutant (deficient in transport of substrates across the inner membrane) which overproduced the periplasmic FhuD 30-kDa protein, bound [55Fe] iron(III) ferrichrome. Resistance of FhuD to proteinase K in the presence of ferrichrome, aerobactin, and coprogen indicated binding of these substrates to FhuD. FhuD displays significant similarity to the periplasmic FecB, FepB, and BtuE proteins. The extremely hydrophobic FhuB 70-kDa protein is located in the cytoplasmic membrane and consists of two apparently duplicated halves. The N-and C-terminal halves [FhuB(N) and FhuB(C)] were expressed separately infhuB mutants. Only combinations of FhuB(N) and FhuB(C) polypeptides restored sensitivity to albomycin and growth on iron hydroxamate as a sole iron source, indicating that both halves of FhuB were essential for substrate translocation and that they combined to form an active permease. In addition, a FhuB derivative with a large internal duplication of 271 amino acids was found to be transport-active, indicating that the extra portion did not disturb proper insertion of the active FhuB segments into the cytoplasmic membrane. A region of considerable similarity, present twice in FhuB, was identified near the C-terminus of 20 analyzed hydrophobic proteins of periplasmic-binding-protein-dependent systems. The FhuC 30 kDa protein, most likely involved in ATP binding, contains two domains representing consensus sequences among all peripheral cytoplasmic membrane proteins of these systems. Amino acid replacements in domain I (LysGlu and Gln) and domain II (AspAsn and Glu) resulted in a transport-deficient phenotype.  相似文献   

13.
14.
Summary ThefhuB, fhuC andfhuD genes encode proteins which catalyze transport of iron(III)-hydroxamate compounds from the periplasm into the cytoplasm ofEscherichia coli. ThefhuB, C, D genes were cloned downstream of a strong phage T7 promoter and transcribed by T7 RNA polymerase. The overexpressed FhuD protein appeared in two forms of 31 and 28 kDa and was released upon conversion of vegetative cells into spheroplasts, suggesting synthesis of FhuD as a precursor and export into the periplasm. The very hydrophobic FhuB protein was found in the cytoplasmic membrane. These properties, together with the previously found homologies in the FhuC protein to ATP-binding proteins, display the characteristics of a periplasmic binding protein dependent transport system across the cytoplasmic membrane. The molecular weight of FhuB and the sequence offhuC, as previously published by us, was confirmed. FhuB exhibited double the size of most hydrophobic proteins of such systems and showed homology between the amino- and carboxy-terminal halves of the protein, indicating duplication of an original gene and subsequent fusion of the two DNA fragments.  相似文献   

15.
Iron(III) hydroxamate transport across the cytoplasmic membrane is catalyzed by the very hydrophobic FhuB protein and the membrane-associated FhuC protein, which contains typical ATP-binding domains. Interaction between the two proteins was demonstrated by immunoelectron microscopy with anti-FhuC antibodies, which showed FhuB-mediated association of FhuC with the cytoplasmic membrane. In addition, inactive FhuC derivatives carrying single amino acid replacements in the ATP-binding domains suppressed wild-type FhuC transport activity, which arose either from displacement of active FhuC from FhuB by the mutated FhuC derivatives or from the formation of mixed inactive FhuC multimers between wild-type and mutated FhuC proteins. Inactive FhuC derivatives containing internal deletions and insertions showed no phenotypic suppression, indicating conformational alterations that rendered the FhuC derivatives unable to displace wild-type FhuC. It is concluded that the physical interaction between FhuC and FhuB implies a coordinate activity of both proteins in the transport of iron(III) hydroxamates through the cytoplasmic membrane.  相似文献   

16.
The Escherichia colifhu operon, composed of the fhuA, C, D, and B genes, is essential for the utilization of ferric siderophores of the hydroxamate type and for the uptake of the antibiotic albomycin. We have had difficulty studying the effects of missense mutations in individual plasmid-encoded transport genes because appropriate test strains were not found: all isolated chromosomal mutations in either one of the fhu genes (with a complete loss of function) negatively influenced the expression of other fhu genes in the operon. In order to analyze Fhu mutant proteins in a system free of polar effects, we constructed a plasmid-encoded gene cassette system by introducing unique restriction sites that allowed precise cloning of individual fhu genes. The fhu cassette operon expressed in a chromosomal fhu deletion mutant enabled us to evaluate the transport activity of mutated FhuA, FhuC, FhuD or FhuB derivatives. In addition, we found that transport across the outer membrane (via FhuA, TonB, ExbB, D) rather than transport across the cytoplasmic membrane (via FhuC, D, B) was rate limiting. The stoichiometry of the components involved in the uptake of iron(III) hydroxamates seems to be important for proper functioning. Received: 20 October 1997 / Accepted: 22 December 1997  相似文献   

17.
Summary Transport of iron(III) hydroxamates across the inner membrane into the cytoplasm of Escherichia coli cells is mediated by the FhuC, FhuD and FhuB proteins. We studied the extremely hydrophobic FhuB protein (70 kDa) which is located in the cytoplasmic membrane. The N- and C-terminal halves of the protein [FhuB(N) and FhuB(C)] show homology to each other and to the equivalent polypeptides involved in uptake of ferric dicitrate and of vitamin B2. Various plasmids carrying only one-half of the fhuB gene were expressed in fhuB mutants. Only combinations of FhuB(N) and FhuB(C) polypeptides restored sensitivity to albomycin and growth on iron hydroxamates as sole iron source; no activity was obtained with either half of FhuB alone. These results indicate that both halves of FhuB are essential for substrate translocation and that they combine to form an active permease when expressed separately. In addition, a FhuB derivative with a large internal duplication of 271 amino acids was found to be partially active in transport, indicating that the extra portion did not perurb proper insertion of the active FhuB segments into the cytoplasmic membrane.  相似文献   

18.
Transport of iron(III) hydroxamates across the inner membrane ofEscherichia coli depends on a binding protein-dependent transport system composed of the FhuB,C and D proteins. The FhuD protein, which is synthesized as a precursor and exported through the cytoplasmic membrane, represents the periplasmic binding protein of the system, accepting as substrates a number of hydroxamate siderophores and the antibiotic albomycin. A FhuD derivative, carrying an N-terminal His-tag sequence instead of its signal sequence and therefore not exported through the inner membrane, was purified from the cytoplasm. Functional activity, comparable to that of wild-type FhuD, was demonstrated for this His-tag-FhuD in vitro by protease protection experiments in the presence of different substrates, and in vivo by reconstitution of iron transport in afhuD mutant strain. The experimental data demonstrate that the primary sequence of the portion corresponding to the mature FhuD contains all the information required for proper folding of the polypeptide chain into a functional solute-binding protein. Moreover, purification of modified periplasmic proteins from the cytosol may be a useful approach for recovery of many polypeptides which are normally exported across the inner membrane and can cause toxicity problems when overproduced.  相似文献   

19.
FhuD is the periplasmic binding protein of the ferric hydroxamate transport system of Escherichia coli. FhuD was isolated and purified as a His-tag-labeled derivative on a Ni-chelate resin. The dissociation constants for ferric hydroxamates were estimated from the concentration-dependent decrease in the intrinsic fluorescence intensity of His-tag-FhuD and were found to be 0.4 microM for ferric aerobactin, 1.0 microM for ferrichrome, 0.3 microM for ferric coprogen, and 5.4 microM for the antibiotic albomycin. Ferrichrome A, ferrioxamine B, and ferrioxamine E, which are poorly taken up via the Fhu system, displayed dissociation constants of 79, 36, and 42 microM, respectively. These are the first estimated dissociation constants reported for a binding protein of a microbial iron transport system. Mutants impaired in the interaction of ferric hydroxamates with FhuD were isolated. One mutated FhuD, with a W-to-L mutation at position 68 [FhuD(W68L)], differed from wild-type FhuD in transport activity in that ferric coprogen supported promotion of growth of the mutant on iron-limited medium, while ferrichrome was nearly inactive. The dissociation constants of ferric hydroxamates were higher for FhuD(W68L) than for wild-type FhuD and lower for ferric coprogen (2.2 microM) than for ferrichrome (156 microM). Another mutated FhuD, FhuD(A150S, P175L), showed a weak response to ferrichrome and albomycin and exhibited dissociation constants two- to threefold higher than that of wild-type FhuD. Interaction of FhuD with the cytoplasmic membrane transport protein FhuB was studied by determining protection of FhuB degradation by trypsin and proteinase K and by cross-linking experiments. His-tag-FhuD and His-tag-FhuD loaded with aerobactin specifically prevented degradation of FhuB and were cross-linked to FhuB. FhuD loaded with substrate and also FhuD free of substrate were able to interact with FhuB.  相似文献   

20.
Summary The mechanism of iron(III)hydroxamate transport appears to be of the periplasmic binding protein dependent transport (PBT) kind which is energized by ATP hydrolysis. The FhuC protein contains two domains typical of ATP-binding proteins. Lysine in domain I was replaced by glutamine and glutamate, and aspartate in domain II by asparagine and glutamate, resulting in FhuC derivatives which no longer transported ferrichrome and albomycin. FhuC inactivation by the aspartate-glutamate substitution is especially noteworthy since the negative charge thought to be involved in Mg2+-ATP binding remains the same and the two amino acid side chains differ in only a CH2 group. It is concluded that the two domains that represent consensus sequences among all peripheral cytoplasmic membrane proteins of PBT systems are involved in substrate transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号