首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The vertebrate Axin protein, the product of the mouse fused gene, binds to beta-catenin to inhibit Wnt signaling. We have identified a homolog of Axin in Drosophila, Daxin. Using double-stranded RNA interference, we generated loss-of-function phenotypes that are similar to overexpression of the Drosophila Wnt gene wingless (wg). Overexpression of Daxin produces phenotypes similar to loss of wg. In addition, we show that Daxin overexpression can modify phenotypes elicited by wg and another Drosophila Wnt gene, DWnt-2. Using immunoprecipitation of endogenous Daxin protein from embryos we show that Daxin interacts with Armadillo and Zeste-white 3. The loss-of-function and overexpression phenotypes show that Daxin, like its mammalian counterpart, acts as a negative regulator of wg/Wnt signaling.  相似文献   

3.
Effects of rat Axin domains on axis formation in Xenopus embryos   总被引:1,自引:0,他引:1  
Wnt signaling plays an important role in axis formation in early vertebrate development. Axin is one Wnt signaling regulator that inhibits this pathway. The effects of the injection of mRNA of several rat Axin (rAxin) mutants on axis formation in Xenopus embryos were examined. It was found that rAxin mutants containing only a regulation of G-protein signaling (RGS) domain fragment or with deletion of the RGS domain induced axis formation. Because the RGS domain is a major adenomatous polyposis coli gene product (APC)-binding domain, APC association with glycogen synthase kinase 3beta (GSK3beta) on the Axin molecule may be important in inhibition of axis formation. The ventralizing activities of wild-type rAxin and a mutant in which the Dishevelled and Axin (DIX) domain was deleted (deltaDIX mutant) were examined. Histological examination and gene expression revealed that the ventralizing activity of the deltaDIX mutant was weaker than that of wild-type rAxin. This finding suggests that the C-terminus of rAxin contributes to the inhibition of Wnt signaling in Xenopus embryos. Furthermore, an rAxin mutant that contained both the RGS and GSK3beta-binding domains affected both the dorsal and ventral sides of blastomeres, mediated ectodermal fate and induced expansion of notochord and/or endoderm, but did not induce axis formation.  相似文献   

4.
In a yeast two-hybrid screen using the Drosophila Axin protein as a bait, we have identified a Drosophila homolog of CAP, a component of the glucose transport regulatory complex. Through alternative splicing, the DCAP gene generates a set of five different proteins with unique N-terminal sequences and a common C-terminal SH3 domain. DCAP is predominantly expressed in the midgut and fat bodies of late-stage embryos, suggesting a role in insulin-mediated glucose transport in these organs.  相似文献   

5.
Plakoglobin is homologous to beta-catenin. Axin, a Wnt signal negative regulator, enhances glycogen synthase kinase (GSK)-3beta-dependent phosphorylation of beta-catenin and stimulates the degradation of beta-catenin. Therefore, we examined the effect of Axin on plakoglobin stability. Axin formed a complex with plakoglobin in COS cells and SW480 cells. Axin directly bound to plakoglobin, and this binding was inhibited by beta-catenin. Axin promoted GSK-3beta-dependent phosphorylation of plakoglobin. Furthermore, overexpression of Axin down-regulated the level of plakoglobin in SW480 cells. These results suggest that Axin regulates the stability of plakoglobin by enhancing its phosphorylation by GSK-3beta and that Axin may act on beta-catenin and plakoglobin in similar manners.  相似文献   

6.
7.
Chou HY  Howng SL  Cheng TS  Hsiao YL  Lieu AS  Loh JK  Hwang SL  Lin CC  Hsu CM  Wang C  Lee CI  Lu PJ  Chou CK  Huang CY  Hong YR 《Biochemistry》2006,45(38):11379-11389
Although prominent FRAT/GBP exhibits a limited degree of homology to Axin, the binding sites on GSK3 for FRAT/GBP and Axin may overlap to prevent the effect of FRAT/GBP in stabilizing beta-catenin in the Wnt pathway. Using a yeast two-hybrid screen, we identified a novel protein, GSK3beta interaction protein (GSKIP), which binds to GSK3beta. We have defined a 25-amino acid region in the C-terminus of GSKIP that is highly similar to the GSK3beta interaction domain (GID) of Axin. Using an in vitro kinase assay, our results indicate that GSKIP is a good GSK3beta substrate, and both the full-length protein and a C-terminal fragment of GSKIP can block phosphorylation of primed and nonprimed substrates in different fashions. Similar to Axin GID(381-405) and FRATtide, synthesized GSKIPtide is also shown to compete with and/or block the phosphorylation of Axin and beta-catenin by GSK3beta. Furthermore, our data indicate that overexpression of GSKIP induces beta-catenin accumulation in the cytoplasm and nucleus as visualized by immunofluorescence. A functional assay also demonstrates that GSKIP-transfected cells have a significant effect on the transactivity of Tcf-4. Collectively, we define GSKIP as a naturally occurring protein that is homologous with the GSK3beta interaction domain of Axin and is able to negatively regulate GSK3beta of the Wnt signaling pathway.  相似文献   

8.
9.
Axin, a negative regulator of Wnt, forms a complex with glycogen synthase kinase 3beta, beta-catenin, and adenomatous polyposis coli and promotes GSK3beta-dependent phosphorylation of beta-catenin, thereby stimulating degradation of the beta-catenin. An essential step in that process is the phosphorylation of Axin. Examination of Axin's amino acid sequence revealed it to contain six arginine-X-leucine (RXL) sequences, the cyclin-dependent kinase 2 (CDK2) binding motif, and 10 CDK2 consensus phosphorylation sequences. We also found that cyclin A/CDK2 phosphorylates Axin, thereby enhancing its association with beta-catenin. This suggests that cyclin A/CDK2 is a negative regulator of beta-catenin-mediated signal transduction, which exerts its effects through phosphorylation of Axin.  相似文献   

10.
Modulation of Wnt signaling by Axin and Axil   总被引:7,自引:0,他引:7  
The Wnt signaling pathway is conserved in various species from worms to mammals, and plays important roles in development, cellular proliferation, and differentiation. The molecular mechanisms by which the Wnt signal regulates cellular functions are becoming increasingly well understood. Wnt stabilizes cytoplasmic β-catenin, which stimulates the expression of genes including c-myc, c-jun, fra-1, and cyclin D1. Axin and its homolog Axil, newly recognized as components of the Wnt signaling pathway, negatively regulate this pathway. Other components of the Wnt signaling pathway, including Dvl, glycogen synthase kinase-3β (GSK-3β), β-catenin, and adenomatous polyposis coli (APC), interact with Axin, and the phosphorylation and stability of β-catenin are regulated in the Axin complex. Axil has similar functions to Axin. Thus, Axin and Axil act as scaffold proteins in the Wnt signaling pathway, thereby modulating the Wnt-dependent cellular functions.  相似文献   

11.
Roles of Axin in the Wnt signalling pathway   总被引:20,自引:0,他引:20  
The Wnt signalling pathway is conserved in various species from worms to mammals, and plays important roles in development, cellular proliferation, and differentiation. The molecular mechanisms by which the Wnt signal regulates cellular functions are becoming increasingly well understood. Wnt stabilizes cytoplasmic beta-catenin, which stimulates the expression of genes including c-myc, c-jun, fra-1, and cyclin D1. Axin, newly recognized as a component of the Wnt signalling pathway, negatively regulates this pathway. Other components of the Wnt signalling pathway, including Dvl, glycogen synthase kinase-3beta, beta-catenin, and adenomatous polyposis coli, interact with Axin, and the phosphorylation and stability of beta-catenin are regulated in the Axin complex. Thus, Axin acts as a scaffold protein in the Wnt signalling pathway, thereby regulating cellular functions.  相似文献   

12.
Axin was identified as a regulator of embryonic axis induction in vertebrates that inhibits the Wnt signal transduction pathway. Epistasis experiments in frog embryos indicated that Axin functioned downstream of glycogen synthase kinase 3beta (GSK3beta) and upstream of beta-catenin, and subsequent studies showed that Axin is part of a complex including these two proteins and adenomatous polyposis coli (APC). Here, we examine the role of different Axin domains in the effects on axis formation and beta-catenin levels. We find that the regulators of G-protein signaling domain (major APC-binding site) and GSK3beta-binding site are required, whereas the COOH-terminal sequences, including a protein phosphatase 2A binding site and the DIX domain, are not essential. Some forms of Axin lacking the beta-catenin binding site can still interact indirectly with beta-catenin and regulate beta-catenin levels and axis formation. Thus in normal embryonic cells, interaction with APC and GSK3beta is critical for the ability of Axin to regulate signaling via beta-catenin. Myc-tagged Axin is localized in a characteristic pattern of intracellular spots as well as at the plasma membrane. NH2-terminal sequences were required for targeting to either of these sites, whereas COOH-terminal sequences increased localization at the spots. Coexpression of hemagglutinin-tagged Dishevelled (Dsh) revealed strong colocalization with Axin, suggesting that Dsh can interact with the Axin/APC/GSK3/beta-catenin complex, and may thus modulate its activity.  相似文献   

13.
Wnt signaling plays critical roles in cell proliferation and carcinogenesis. In addition, numerous recent studies have shown that various Wnt signaling components are involved in mitosis and chromosomal instability. However, the role of Axin, a negative regulator of Wnt signaling, in mitosis has remained unclear. Using monoclonal antibodies against Axin, we found that Axin localizes to the centrosome and along mitotic spindles. This localization was suppressed by siRNA specific for Aurora A kinase and by Aurora kinase inhibitor. Interestingly, Axin over-expression altered the subcellular distribution of Plk1 and of phosphorylated glycogen synthase kinase (GSK3β) without producing any notable changes in cellular phenotype. In the presence of Aurora kinase inhibitor, Axin over-expression induced the formation of cleavage furrow-like structures and of prominent astral microtubules lacking midbody formation in a subset of cells. Our results suggest that Axin modulates distribution of Axin-associated proteins such as Plk1 and GSK3β in an expression level-dependent manner and these interactions affect the mitotic process, including cytokinesis under certain conditions, such as in the presence of Aurora kinase inhibitor.  相似文献   

14.
15.
Activation of the Wnt signaling cascade provides key signals during development and in disease. Here we provide evidence, by designing a Wnt receptor with ligand-independent signaling activity, that physical proximity of Arrow (LRP) to the Wnt receptor Frizzled-2 triggers the intracellular signaling cascade. We have uncovered a branch of the Wnt pathway in which Armadillo activity is regulated concomitantly with the levels of Axin protein. The intracellular pathway bypasses Gsk3beta/Zw3, the kinase normally required for controlling beta-catenin/Armadillo levels, suggesting that modulated degradation of Armadillo is not required for Wnt signaling. We propose that Arrow (LRP) recruits Axin to the membrane, and that this interaction leads to Axin degradation. As a consequence, Armadillo is no longer bound by Axin, resulting in nuclear signaling by Armadillo.  相似文献   

16.
Axin forms a complex with adenomatous polyposis coli gene product, glycogen synthase kinase-3beta (GSK-3beta), beta-catenin, Dvl, and protein phosphatase 2A and functions as a scaffold protein in the Wnt signaling pathway. In the Axin complex, GSK-3beta efficiently phosphorylates beta-catenin, which is then ubiquitinated and degraded by proteasome. We isolated a novel protein that binds to Axin and named it Axam (for Axin associating molecule). Axam formed a complex with Axin in intact cells and bound directly to Axin. Axam inhibited the complex formation of Dvl with Axin and the activity of Dvl to suppress GSK-3beta-dependent phosphorylation of Axin. Furthermore, Axam induced the degradation of beta-catenin in SW480 cells and inhibited Wnt-dependent axis duplication in Xenopus embryos. These results suggest that Axam regulates the Wnt signaling pathway negatively by inhibiting the binding of Dvl to Axin.  相似文献   

17.

Background

Canonical Wnt signals, transduced by stabilized β-catenin, play similar roles across animals in maintaining stem cell pluripotency, regulating cell differentiation, and instructing normal embryonic development. Dysregulated Wnt/β-catenin signaling causes diseases and birth defects, and a variety of regulatory processes control this pathway to ensure its proper function and integration with other signaling systems. We previously identified GTP-binding protein 2 (Gtpbp2) as a novel regulator of BMP signaling, however further exploration revealed that Gtpbp2 can also affect Wnt signaling, which is a novel finding reported here.

Results

Knockdown of Gtpbp2 in Xenopus embryos causes severe axial defects and reduces expression of Spemann-Mangold organizer genes. Gtpbp2 knockdown blocks responses to ectopic Wnt8 ligand, such as organizer gene induction in ectodermal tissue explants and induction of secondary axes in whole embryos. However, organizer gene induction by ectopic Nodal2 is unaffected by Gtpbp2 knockdown. Epistasis tests, conducted by activating Wnt signal transduction at sequential points in the canonical pathway, demonstrate that Gtpbp2 is required downstream of Dishevelled and Gsk3β but upstream of β-catenin, which is similar to the previously reported effects of Axin1 overexpression in Xenopus embryos. Focusing on Axin in Xenopus embryos, we find that knockdown of Gtpbp2 elevates endogenous or exogenous Axin protein levels. Furthermore, Gtpbp2 fusion proteins co-localize with Dishevelled and co-immunoprecipitate with Axin and Gsk3b.

Conclusions

We conclude that Gtpbp2 is required for canonical Wnt/β-catenin signaling in Xenopus embryos. Our data suggest a model in which Gtpbp2 suppresses the accumulation of Axin protein, a rate-limiting component of the β-catenin destruction complex, such that Axin protein levels negatively correlate with Gtpbp2 levels. This model is supported by the similarity of our Gtpbp2-Wnt epistasis results and previously reported effects of Axin overexpression, the physical interactions of Gtpbp2 with Axin, and the correlation between elevated Axin protein levels and lost Wnt responsiveness upon Gtpbp2 knockdown. A wide variety of cancer-causing Wnt pathway mutations require low Axin levels, so development of Gtpbp2 inhibitors may provide a new therapeutic strategy to elevate Axin and suppress aberrant β-catenin signaling in cancer and other Wnt-related diseases.
  相似文献   

18.
Cortical rotation and concomitant dorsal translocation of cytoplasmic determinants are the earliest events known to be necessary for dorsoventral patterning in Xenopus embryos. The earliest known molecular target is beta-catenin, which is essential for dorsal development and becomes dorsally enriched shortly after cortical rotation. In mammalian cells cytoplasmic accumulation of beta-catenin follows reduction of the specific activity of glycogen synthase kinase 3-beta (GSK3beta). In Xenopus embryos, exogenous GSK3beta) suppresses dorsal development as predicted and GSK3beta dominant negative (kinase dead) mutants cause ectopic axis formation. However, endogenous GSK3beta regulation is poorly characterized. Here we demonstrate two modes of GSK3beta regulation in Xenopus. Endogenous mechanisms cause depletion of GSK3beta protein on the dorsal side of the embryo. The timing, location and magnitude of the depletion correspond to those of endogenous beta-catenin accumulation. UV and D(2)O treatments that abolish and enhance dorsal character of the embryo, respectively, correspondingly abolish and enhance GSK3beta depletion. A candidate regulator of GSK3beta, GSK3-binding protein (GBP), known to be essential for axis formation, also induces depletion of GSK3beta. Depletion of GSK3beta is a previously undescribed mode of regulation of this signal transducer. The other mode of regulation is observed in response to Wnt and dishevelled expression. Neither Wnt nor dishevelled causes depletion but instead they reduce GSK3beta-specific activity. Thus, Wnt/Dsh and GBP appear to effect two biochemically distinct modes of GSK3beta regulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号