首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
 This study describes the inheritance and linkage map positions of two low phytic acid barley (Hordeum vulgare) mutations, lpa1-1 and lpa2-1, that dramatically reduce grain phytic acid content and increase inorganic seed phosphorus (P). Wide-cross, F2 mapping populations were constructed by mating six-rowed varieties, ‘Steptoe’ and/or ‘Morex’, with two-rowed ‘Harrington’lpa donor lines homozygous for either lpa1-1 or lpa2-1. The barley lpa1-1 mutation showed normal inheritance patterns, whereas a deficiency of homozygous lpa2-1/lpa2-1 F2 plants was observed. We identified a codominant, STS-PCR marker (aMSU21) that cosegregated with lpa1-1 in a population of 41 F2 plants. The aMSU21 marker was then mapped to a locus on barley chromosome 2H, using a North American Barley Genome Mapping Project (NABGMP) doubled haploid population (‘Harrington’בMorex’). We determined that lpa2-1 is located within a recombination interval of approximately 30 cM between two AFLP markers that were subsequently mapped to barley chromosome 7H by integration with the same NABGMP population. Recent comparative mapping studies indicate conserved genetic map orders of several homologous molecular marker loci in maize and the Triticeae species that also show corresponding linkage to the biochemically similar lpa2 mutations of maize and barley. This observation suggests that barley and maize lpa2 mutations may affect orthologous genes. No such evidence for correspondence of the phenotypically similar lpa1 mutations of barley and maize has been revealed. Received: 22 September 1997 / Accepted: 2 December 1997  相似文献   

2.
Phytic acid (PA, myo-inositol-1,2,3,4,5,6-hexakis-phosphate) and its salt form (phytate) are the principal storage forms of phosphorus in cereal grains. Since PA and phytates cannot be efficiently digested by monogastric animals, the abundance of PA in cereal and legume grains causes nutritional and environmental problems. The present study aimed at developing breeder-friendly functional molecular markers of five low phytic acid (LPA) mutant alleles of three rice (Oryza sativa L.) genes: viz., XQZ-lpa (a 1,475-bp deletion) and KBNT-lpa (a C→T single nucleotide polymorphism [SNP]) of LOC_Os02g57400, Z9B-lpa (a 6-bp deletion) and MH-lpa (a 1-bp deletion) of LOC_Os04g55800, and XS-lpa (a C→T SNP) of LOC_Os03g04920. First, markers for gel-based length polymorphism analysis were developed: viz., two insertion–deletion markers for XQZ-lpa and Z9B-lpa, two cleaved amplified polymorphic sequence (CAPS) markers for KBNT-lpa and XS-lpa, and one derived CAPS marker for MH-lpa. Second, the high-resolution melting (HRM) curve analysis method was explored for distinguishing plants with wild-type (WT) and LPA alleles (except XQZ-lpa). Plants of genotypes with homozygous mutant allele and WT, and with heterozygous alleles, could be directly differentiated by HRM for KBNT-lpa, XS-lpa and MH-lpa; only heterozygous individuals could be directly distinguished from homozygous WT and mutant plants for Z9B-lpa. However, by adding 15 % WT DNA templates to test samples before PCR, amplicons of three genotypes of the Z9B-lpa allele could also be differentiated by HRM analysis. Third, it was demonstrated that these markers could be effectively used for marker-assisted selection of LPA rice, and breeding lines with two non-allelic LPA mutations were developed with PA contents significantly lower than their respective parental LPA lines. Taken together, the present study developed functional molecular markers for efficient selection of LPA plants and demonstrated that double mutant LPA lines with significantly lower PA levels than primary LPA mutants (with single mutations) could be developed by pyramiding two non-allelic LPA mutations.  相似文献   

3.
Phytate is the primary form of phosphorus found in mature cereal grain. This form of phosphorus is not available to monogastric animals due to a lack of the enzyme phytase in their digestive tract. Several barley low phytic acid (lpa) mutants have been identified that contain substantial decreases in seed phytate accompanied by concomitant increases in inorganic phosphorus. Seed homozygous for low phytic acid 1-1 (lpa1-1) or low phytic acid 2-1 (lpa2-1) has a 50% and 70% decrease in seed phytate respectively. These mutations were previously mapped to chromosomes 2HL and 7HL respectively. The RFLP marker ABC153 located in the same region of 2H was converted to a sequence-characterized-amplified-region (SCAR) marker. Segregation analysis of the CDC McGwire × Lp422 doubled haploid population confirmed linkage between the SCAR marker and the lpa1-1 locus with 15% recombination. A third low phytic acid mutant, M635, has a 75% decrease in phytate. This mutation was located to chromosome 1HL by linkage with an inter-simple sequence repeat (ISSR) based marker (LP75) identified through bulked-segregant analysis, and has been designated lpa3-1. Based on analysis of recombination between marker LP75 and low phytic acid in an additional mutant line M955 (95% phytate decrease), lpa3-1 and the mutation in M955 are in the same region on chromosome 1HL, and may be allelic.  相似文献   

4.
Phytic acid (PA, myo-inositol 1,2,3,4,5,6-hexakisphosphate) is an important anti-nutritional component in cereal and legume grains. PA forms of phosphorus (P) and its salts with micronutrient cations, such as iron and zinc, are indigestible in humans and non-ruminant animals, and hence could affect food/feed nutritional value and cause P pollution of ground water from animal waste. We previously developed a set of low phytic acid (LPA) rice mutants with the aim to increase their nutritional quality. Among them, one line, i.e., Os-lpa-XQZ-1 (hereafter lpa 1-2), was identified to have a mutation allelic to the KBNT lpa 1-1 mutation (hereafter lpa 1-1), which was already delimited to a 47-kb region on chromosome 2. In this study, we searched the candidate gene for these two allelic LPA mutations using T-DNA insertion mutants, mutation detection by CEL I facilitated mismatch cleavage, and gene sequencing. The TIGR locus LOC_Os02g57400 was revealed as the candidate gene hosting these two mutations. Sequence analysis showed that the lpa 1-1 is a single base pair substitution mutation, while lpa 1-2 involves a 1,475-bp fragment deletion. A CAPS marker (LPA1_CAPS) was developed for distinguishing the lpa 1-1 allele from lpa 1-2 and WT alleles, and InDel marker (LPA1_InDel) was developed for differentiating the lpa 1-2 allele from lpa 1-1 and WT ones. Analysis of two populations derived from the two mutants with wild-type varieties confirmed the complete co-segregation of these two markers and LPA phenotype. The LOC_Os02g57400 is predicted to encode, through alternative splicing, four possible proteins that are homologous to the 2-phosphoglycerate kinase reported in hyperthermophilic and thermophilic bacteria. The identification of the LPA gene and development of allele-specific markers are of importance not only for breeding LPA varieties, but also for advancing genetics and genomics of phytic acid biosynthesis in rice and other plant species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Both the pollination control system and genetic distance are major factors in the utilization of crop heterosis. The recessive genic male sterile line (RGMS) 7-7365A (Bnms3ms3ms4ms4) has been widely applied to hybrid seed production because it can generate a completely male sterile population by crossing with the 7-7365C temporary line (Bnms3ms3rfrf). In this study, the sterile genes of 7-7365A were transferred to the new Brassica napus lines 7-749 and 7-750 with a high content of subgenomes by backcross breeding. We used the amplified fragment length polymorphism (AFLP) technique combined with bulk segregant analysis (BSA) to identify markers linked to the BnMs4 gene. Twelve AFLP markers linked to the BnMs4 gene were identified. Of them, SA06MG09 and P08MG16 were the closest makers, which were on either side of the gene at a distance of 0.9 and 0.8?cM, respectively. Twenty AFLP primer combinations were used to screen the F2, BC1F3, and BC2F4 populations from the breeding program, and the markers linked to the BnMs3 and BnMs4 genes were used to screen the BC2F4 populations. As a result, we obtained two types of improved sterile lines, 7-749A and 7-750A, and their indexes of subgenomic components (ISG) were 44.2?C49.8 and 20.2?C26.6%, respectively. The combining ability analyses of seed yield character were conducted in the crosses from the three sterile lines and ten restorers within a random block design in three environments for two successive years. The general combining ability (GCA) of the two improved sterile lines were significantly higher than the GCA of 7-7365A in every environment tested. The two improved sterile lines had stability in seed yield, and they will be used in the future for hybrid seed production.  相似文献   

6.
7.
Phytic acid (myo-inositol-1, 2, 3, 4, 5, 6-hexakisphosphate or Ins P(6)) typically represents approximately 75% to 80% of maize (Zea mays) seed total P. Here we describe the origin, inheritance, and seed phenotype of two non-lethal maize low phytic acid mutants, lpa1-1 and lpa2-1. The loci map to two sites on chromosome 1S. Seed phytic acid P is reduced in these mutants by 50% to 66% but seed total P is unaltered. The decrease in phytic acid P in mature lpa1-1 seeds is accompanied by a corresponding increase in inorganic phosphate (P(i)). In mature lpa2-1 seed it is accompanied by increases in P(i) and at least three other myo-inositol (Ins) phosphates (and/or their respective enantiomers): D-Ins(1,2,4,5,6) P(5); D-Ins (1,4,5,6) P(4); and D-Ins(1,2,6) P(3). In both cases the sum of seed P(i) and Ins phosphates (including phytic acid) is constant and similar to that observed in normal seeds. In both mutants P chemistry appears to be perturbed throughout seed development. Homozygosity for either mutant results in a seed dry weight loss, ranging from 4% to 23%. These results indicate that phytic acid metabolism during seed development is not solely responsible for P homeostasis and indicate that the phytic acid concentration typical of a normal maize seed is not essential to seed function.  相似文献   

8.
The lpa1 mutations in maize are caused by lesions in the ZmMRP4 (multidrug resistance-associated proteins 4) gene. In previous studies (Raboy et al. in Plant Physiol 124:355–368, 2000; Pilu et al. in Theor Appl Genet 107:980–987, 2003a; Shi et al. Nat Biotechnol 25:930–937, 2007), several mutations have been isolated in this locus causing a reduction of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, or InsP6) content and an equivalent increasing of free phosphate. In particular, the lpa1-241 mutation causes a reduction of up to 90% of phytic acid, associated with strong pleiotropic effects on the whole plant. In this work, we show, for the first time to our knowledge, an interaction between the accumulation of anthocyanin pigments in the kernel and the lpa mutations. In fact the lpa1-241 mutant accumulates a higher level of anthocyanins as compared to wild type either in the embryo (about 3.8-fold) or in the aleurone layer (about 0.3-fold) in a genotype able to accumulate anthocyanin. Furthermore, we demonstrate that these pigments are mislocalised in the cytoplasm, conferring a blue pigmentation of the scutellum, because of the neutral/basic pH of this cellular compartment. As a matter of fact, the propionate treatment, causing a specific acidification of the cytoplasm, restored the red pigmentation of the scutellum in the mutant and expression analysis showed a reduction of ZmMRP3 anthocyanins’ transporter gene expression. On the whole, these data strongly suggest a possible interaction between the lpa mutation and anthocyanin accumulation and compartmentalisation in the kernel.  相似文献   

9.
Phytic acid (PA), myo-inositol 1,2,3,4,5,6-hexakisphosphate, is the main storage form of phosphorus in plants. It is localized in seeds, deposited as mixed salts of mineral cations in protein storage vacuoles; during germination, it is hydrolyzed by phytases. When seeds are used as food/feed, PA and the bound cations are poorly bioavailable for human and monogastric livestock due to their lack of phytase activity. Reducing the amount of PA is one strategy to solve these problems and is an objective of genetic improvement for improving the nutritional properties of major crops. In this work, we present data on the isolation of a new maize (Zea mays L.) low phytic acid 1 (lpa1) mutant allele obtained by chemical mutagenesis. This mutant, named lpa1-7, is able to accumulate less phytic phosphorus and a higher level of free inorganic phosphate in the seeds compared with wild type. It exhibits a monogenic recessive inheritance and lethality as homozygous. We demonstrate that in vitro cultivation can overcome lethality allowing the growth of adult plants, and we report data regarding embryo and leaf abnormalities and other defects caused by negative pleiotropic effects of this mutation.  相似文献   

10.
The waxy (wx) gene in maize is associated with higher content of amylopectin in the endosperm and better flavor. The opaque-16 (o16) gene is associated with higher lysine content in the endosperm and better nutritional value. To pyramid the wx and o16 genes, cross and backcross populations were constructed using the o16 line QCL3024 and the two waxy lines, QCL5019 and QCL5008, as parents. The linkage marker umc1141 for the o16 gene and the internal marker phi027 for the wx gene were used to select the target genes. Simple sequence repeat markers covering the whole genome were used for background selection in individual progenies of the backcross population. The grain lysine content was determined using the Acid Orange-12 Dye Binding Lysine method. Qualitative and quantitative analyses of the grain content of amylopectin were performed using the I2-KI procedure and double-wavelength spectrophotometry, respectively. Four lines of the double recessive genotype wxwxo16o16 were obtained from the F4 generation of the cross population and three lines of the same genotype were obtained from the BC2F4 generation of the backcross population. The lysine content of the pyramid lines was 16–27 and 18–28 % higher than the waxy parents QCL5019 and QCL5008, respectively. The pyramid lines had 61–63 % more amylopectin than the high-lysine parent QCL3024. The three pyramid lines from the backcross population had similar genetic background to the waxy parent QCL5008. Our results are of significance for the improvement of maize quality.  相似文献   

11.
myo-Inositol-1,2,3,4,5,6-hexakisphosphate (Ins P(6) or "phytic acid") typically represents approximately 75% of the total phosphorus and >80% of soluble myo-inositol (Ins) phosphates in seeds. The seed phosphorus and Ins phosphate phenotypes of four non-lethal barley (Hordeum vulgare L.) low phytic acid mutations are described. In seeds homozygous for M 635 and M 955 reductions in Ins P(6), approximately 75 and >90% respectively, are accompanied by reductions in other Ins phosphates and molar-equivalent increases in Pi. This phenotype suggests a block in supply of substrate Ins. In seeds homozygous for barley low phytic acid 1-1 (lpa1-1), a 45% decrease in Ins P(6) is mostly matched by an increase in Pi but also accompanied by small increases in Ins(1,2,3,4,6)P(5). In seeds homozygous for barley lpa2-1, reductions in seed Ins P(6) are accompanied by increases in both Pi and in several Ins phosphates, a phenotype that suggests a lesion in Ins phosphate metabolism, rather than Ins supply. The increased Ins phosphates in barley lpa2-1 seed are: Ins(1,2,3,4,6)P(5); Ins(1,2,4,6)P(4) and/or its enantiomer Ins(2,3,4,6)P(4); Ins(1,2,3,4)P(4) and/or its enantiomer Ins(1,2,3,6)P(4); Ins(1,2,6)P(3) and/or its enantiomer Ins(2,3,4)P(3); Ins(1,5,6)P(3) and/or its enantiomer Ins(3,4,5)P(3) (the methods used here cannot distinguish between enantiomers). This primarily "5-OH" series of Ins phosphates differs from the "1-/3-OH" series observed at elevated levels in seed of the maize lpa2 genotype, but previous chromosomal mapping data indicated that the maize and barley lpa2 loci might be orthologs of a single ancestral gene. Therefore one hypothesis that might explain the differing lpa2 phenotypes is that their common ancestral gene encodes a multi-functional, Ins phosphate kinase with both "1-/-3-" and "5-kinase" activities. A putative pyrophosphate-containing Ins phosphate, possibly an Ins P(7), was also observed in the mature seed of all barley genotypes except lpa2-1. Barley M 955 indicates that at least for this species, the ability to accumulate Ins P(6) can be nearly abolished while retaining at least short-term ( approximately 1.0 years) viability.  相似文献   

12.
Low phytic acid grains can provide a solution to dietary micronutrient deficiency and environmental pollution. A low phytic acid 1-1 (lpa1-1) barley mutant was identified using forward genetics and the mutant gene was mapped to chromosome 2HL. Comparative genomic analysis revealed that the lpa1-1 gene was located in the syntenic region of the rice Os-lpa-MH86-1 gene on chromosome 4. The gene ortholog of rice Os-lpa-MH86-1 (designated as HvST) was isolated from barley using polymerase chain reaction and mapped to chromosome 2HL in a doubled haploid population of Clipper×Sahara. The results demonstrate the collinearity between the rice Os-lpa-MH86-1 gene and the barley lpa1-1 region. Sequence analysis of HvST revealed a single base pair substitution (C→T transition) in the last exon of the gene in lpa1-1 (M422), which resulted in a nonsense mutation. These results will facilitate our understanding of the molecular mechanisms controlling the low phytic acid phenotype and assist in the development of a diagnostic marker for the selection of the lpa1-1 gene in barley.  相似文献   

13.
So far, in maize, three classes of mutants involved in phytic acid biosynthesis have been isolated: lpa1, lpa2 and lpa3. In 2007, a gene tagging experiment performed by Shi et al. found that mutations in ZmMRP4 (multidrug resistance-associated proteins 4) gene cause lpa1 phenotype. In previous studies, we isolated and described a single recessive lpa mutation (originally named lpa241), which was allelic to the lpa1-1 mutant, and was consequently renamed lpa1-241. It showed a decrease in the expression of the myo-inositol (Ins)-3-phosphate synthase gene (mips1S). In this study, we present genetic and molecular analyses of the lpa1-241 mutation that indicate an epigenetic origin of this trait, that is, a paramutagenic interaction that results in meiotically heritable changes in ZmMRP4 gene expression, causing a strong pleiotropic effect on the whole plant. The use of a 5-Azacytidine treatment provided data suggesting an association between gene methylation and the lpa1-241 phenotype. To our knowledge, this is the first report of a paramutagenic activity not involving flavonoid biosynthesis in maize, but regarding a key enzyme of an important metabolic pathway in plants.  相似文献   

14.
F2:3 families from crosses between three rice indica introgression lines and their common japonica recurrent parent were used to evaluate two quantitative trait loci (QTL) for sheath blight (SB) resistance. Three selected TeQing-into-Lemont backcross introgression lines (TILs) were more resistant than their susceptible parent (Lemont) in inoculated field plots, and were molecularly verified to contain TeQing alleles at qSB9-2 and/or qSB12-1. F2 individuals homozygous for qSB9-2 and qSB12-1 provided F2:3 families that fit four genotypic classes: containing the resistant TeQing allele for qSB9-2 TQ alone, qSB12-1 TQ alone, both qSB9-2 TQ and qSB12-1 TQ , and neither SB QTL introgression. By comparing the SB resistance of these four genotypic classes in micro-chamber evaluations and inoculated field plots, the phenotypic values of the QTL were measured. Under both study conditions, disease resistance ranked qSB9-2?+?qSB12-1?>?qSB9-2?>?qSB12-1?>?no QTL, with both qSB9-2 and qSB12-1 acting as dominant resistance genes. In micro-chamber studies, qSB9-2 TQ reduced disease an average of 1.0 disease index units and qSB12-1 TQ by 0.7 using a scale of 0?C9. Field effects of qSB9-2 TQ and qB12-1 TQ were less pronounced, with average phenotypic gains of 0.5 and 0.2 units, respectively. TIL:642 proved to contain qSB9-2 TQ in an introgression so small it was tagged by just RM205 on the tip of chromosome 9. These studies verify that the indica introgression of qSB9-2 TQ or qSB12-1 TQ can measurably improve resistance to sheath blight disease in a highly susceptible tropical japonica cultivar, and fine-mapped the qSB9-2 locus. Markers presently verified as linked to these QTL can support marker-assisted breeding to improve disease resistance.  相似文献   

15.
The gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1-2) is a key quantitative trait locus that controls oil content and oleic acid composition in maize kernels. Here we re-sequenced the DGAT1-2 region responsible for oil variation in a maize landrace set and in 155 inbred lines (35 high-oil and 120 normal lines). The high-oil DGAT1-2 allele was present in most Northern Flint and Southern Dent populations but was absent in five of eight Corn Belt Dent open-pollinated populations and in most of the earlier inbred lines. Loss of the high-oil DGAT1-2 allele possibly resulted from genetic drift in the early twentieth century when a few Corn Belt Dent populations were selected for the development of high-grain-yield inbred lines. Association analysis detected significant effects of two PCR-based functional markers (HO06 and DGAT04; developed based on DGAT1-2 polymorphisms) on kernel oil content and oleic acid composition using the 155 inbred lines. Zheng58 and Chang7-2, the parent inbred lines of elite hybrid Zhengdan958, were used to transfer the favorable allele from the high-oil line By804 using marker-assisted backcrossing with the two functional markers. In BC5F2:3 populations, oil content of the three genotypes (−/−, +/−, and +/+) was, respectively, 3.37, 4.20, and 4.61% (Zheng58 recipient line) and 4.14, 4.67, and 5.25% (Chang7-2 recipient line). Oil content of homozygous kernels containing the high-oil DGAT1-2 allele increased by 27–37% compared with recurrent parents. Hence, these functional markers can be used to re-introduce the high-oil DGAT1-2 allele into modern inbred lines for increased oil content through marker-assisted backcrossing.  相似文献   

16.
The tomato yellow leaf curl virus (TYLCV), transmitted by whitefly, causes major disease losses to tomato crops in tropical and subtropical regions of the world. Several genes conferring resistance to TYLCV, mainly Ty-1 and Ty-3 genes, have been introgressed to cultivated tomato (Solanum lycopersicum) from the wild relative species Solanum chilense. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), several AFLP markers closely linked to Ty-1 and Ty-3 genes were identified from the resistant breeding line TZ841-4. Cloning and sequencing of the selected AFLP fragments allowed us to develop codominant cleaved amplified polymorphic sequence and dominant sequence characterized amplified region markers closely linked to Ty-1. In addition, Ty-3-linked allelic-specific markers have been discriminated by a quantitative real-time PCR protocol. Taken together, these markers constitute useful tools for marker-assisted selection breeding programs to improve genetic resistance to TYLCV, and also to initiate map-based cloning approaches to isolate the resistance genes.  相似文献   

17.
Phytic acid, myo-inositol 1,2,3,4,5,6-hexakisphosphate, is the major storage compound of phosphorous (P) in plants, predominantly accumulating in seeds (up to 4–5% of dry weight) and pollen. In cereals, phytic acid is deposited in embryo and aleurone grain tissues as a mixed "phytate" salt of potassium and magnesium, although phytates contain other mineral cations such as iron and zinc. During germination, phytates are broken down by the action of phytases, releasing their P, minerals and myo-inositol which become available to the growing seedling. Phytic acid represents an anti-nutritional factor for animals, and isolation of maize low phytic acid (lpa) mutants provides a novel approach to study its biochemical pathway and to tackle the nutritional problems associated with it. Following chemical mutagenesis of pollen, we have isolated a viable recessive mutant named lpa 241 showing about 90% reduction of phytic acid and about a tenfold increase in seed-free phosphate content. Although germination rate was decreased by about 30% compared to wild-type, developement of mutant plants was apparentely unaffected. The results of the genetic, biochemical and molecular characterization experiments carried out by SSR mapping, MDD-HPLC and RT-PCR are consistent with a mutation affecting the MIPS1S gene, coding for the first enzyme of the phytic acid biosynthetic pathway.Communicated by F. Salamini  相似文献   

18.
Phytic acid (myo-inositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is an important constituent of soybean meal. Since phytic acid and its mineral salts (phytates) are almost indigestible for monogastrics, their abundance in grain food/feed causes nutritional and environmental problems; interest in breeding low phytic acid has therefore increased considerably. Based on gene mapping and the characteristics of inositol polyphosphates profile in the seeds of a soybean mutant line Gm-lpa-ZC-2, the soybean ortholog of inositol 1,3,4,5,6 pentakisphosphate (InsP5) 2-kinase (IPK1), which transforms InsP5 into phytic acid, was first hypothesized as the candidate gene responsible for the low phytic acid alteration in Gm-lpa-ZC-2. One IPK1 ortholog (Glyma14g07880, GmIPK1) was then identified in the mapped region on chromosome 14. Sequencing revealed a G?→?A point mutation in the genomic DNA sequence and the exclusion of the entire fifth exon in the cDNA sequence of GmIPK1 in Gm-lpa-ZC-2 compared with its wild-type progenitor Zhechun No. 3. The excluded exon encodes 37 amino acids that spread across two conserved IPK1 motifs. Furthermore, complete co-segregation of low phytic acid phenotype with the G?→?A mutation was observed in the F2 population of ZC-lpa x Zhexiandou No. 4 (a wild-type cultivar). Put together, the G?→?A point mutation affected the pre-mRNA splicing and resulted in the exclusion of the fifth exon of GmIPK1 which is expected to disrupt the GmIPK1 functionality, leading to low phytic acid level in Gm-lpa-ZC-2. Gm-lpa-ZC-2, would be a good germplasm source in low phytic acid soybean breeding.  相似文献   

19.
Analysis of F2, F5 and MTHFR genes SNPs allelic variants in population of Ukraine. Polymorphic variants were analyzed in 172 unrelated individuals using PCR followed by RFLP analysis. Following genotypes have been identified: GG (97%), GA (3%) for F2 gene G20210A SNP, GG (96.5%), GA (3.5%) for F5 gene G1691A SNP and CC (49.5%), CT (43%), TT (7.5%) for MTHFR gene C677T SNP. Following combined genotypes have been detected. We observed 1.7% heterozygous carriers of MTHFR gene 677T SNP which were heterozygous for one of the alleles of F5 1691A or F2 20210A genes. On the other hand, the 7.5% MTHFR gene 677T SNP homozygous individuals carried wild type alleles only of F5 and F2 genes. None of the individuals was carrying F5 1691 A and F2 20210A genes polymorphic variants simultaneously. The data about F2, F5 and MTHFR genes SNPs allelic frequencies in the population of Ukraine have been obtained. Thus, distribution of F2, F5 and MTHFR genotypes based on analysis of SNP in those three genes simultaneously has been detected.  相似文献   

20.
A set of introgression lines (ILs) containing chromosomal segments from O. rufipogon (IRGC 105491), a wild relative of O. sativa, in the genetic background of an elite US variety, cv. Jefferson, was developed to confirm the performance of six yield-enhancing quantitative trait loci (QTL). Fifty BC3F3 ILs containing homozygous O. rufipogon introgressions at each of the target QTL regions, and as few background introgressions as possible, were selected for evaluation of yield and 14 yield-related traits in field studies conducted over 2 years at four locations in the southern USA. Performance of the IL families was compared with three commercial inbreds and one hybrid variety. IL families carrying introgressions from the low-yielding wild parent at the QTL yld2.1 and yld6.1 yielded 27.7 and 26.1 % more than Jefferson, respectively. IL yld2A, which possesses yld2.1, also performed well under alternate wetting and drying conditions in two field locations. After the first year of field trials, 10 of the top-performing BC3F4 families, representing five of the QTL targets, were genotyped with an Illumina 1,536 assay to define the size and location of the wild introgressions. BC3F4 families with the fewest background introgressions were backcrossed to Jefferson and selfed. The resulting BC4F2 families were screened with targeted single nucleotide polymorphism assays to identify individuals carrying homozygous introgressions across the target QTL. Twelve ILs, representing each of the six QTL targets, have been submitted to the Genetic Stocks Oryza Collection for studies on transgressive variation and as interspecific pre-breeding lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号