首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phosphatidylinositol (PI) 4-kinase was purified 25,000-fold from the cytosolic fraction of extracts from the yeast Saccharomyces cerevisiae. The purification consisted of an ammonium sulfate fractionation followed by chromatography on sulfonated-agarose (S-Sepharose), phosphocellulose, threonine-agarose, and quaternary amino (Mono Q), and sulfonated (Mono S) beads. Major contaminants in the purification, Hsc82 and Hsp82 (yeast homologs of the mammalian heat shock protein Hsp90), were eliminated by using a combination of molecular genetics (to construct a null mutation in HSC82), altered growth conditions (to minimize expression from the inducible HSP82 gene), and high ionic strength fractionation conditions (to remove the residual Hsp82). The purified enzyme had an apparent subunit molecular weight of 125,000, much larger than any other well characterized PI-4-kinase reported previously. Like mammalian PI-4-kinases, the yeast enzyme specifically phosphorylated PI on position 4 of the inositol ring and was stimulated by Triton X-100. However, activity was not inhibited by adenosine, a potent inhibitor of certain (type II) mammalian PI-4-kinases. The enzyme displayed typical Michaelis-Menten kinetics with apparent Km values of 100 microM for ATP and 50 microM for PI. To date, this yeast enzyme is the first soluble PI-4-kinase purified from any source.  相似文献   

2.
A DNA glycosylase that excises, 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine (Fapy) from double stranded DNA has been purified 28,570-fold from the yeast Saccharomyces cerevisiae. Gel filtration chromatography shows that yeast Fapy DNA glycosylase has a molecular weight of about 40 kDa. The Fapy DNA glycosylase is active in the presence of EDTA, but is completely inhibited by 0.2 M KCl. Yeast Fapy DNA glycosylase does not excise N7-methylguanine, N3-methyladenine or uracil. A repair enzyme for 7,8-dihydro-8-oxoguanine (8-OxoG) co-purifies with the Fapy DNA glycosylase. This repair activity causes strand cleavage at the site of 8-OxoG in DNA duplexes. The highest rate of incision of the 8-OxoG-containing strand was observed for duplexes where 8-OxoG was opposite guanine. The mode of incision at 8-OxoG was not established yet. The results however suggest that the Fapy- and 8-OxoG-repair activities are associated with a single protein.  相似文献   

3.
4.
Uracil-DNA glycosylase (UDG; UNG) has been purified 17000-fold from Atlantic cod liver (Gadus morhua). The enzyme has an apparent molecular mass of 25 kDa, as determined by gel filtration, and an isoelectric point above 9.0. Atlantic cUNG is inhibited by the specific UNG inhibitor (Ugi) from the Bacillus subtilis bacteriophage (PBS2), and has a 2-fold higher activity for single-stranded DNA than for double-stranded DNA. cUNG has an optimum activity between pH 7.0-9.0 and 25-50 mM NaCl, and a temperature optimum of 41 degrees C. Cod UNG was compared with the recombinant human UNG (rhUNG), and was found to have slightly higher relative activity at low temperatures compared with their respective optimum temperatures. Cod UNG is also more pH- and temperature labile than rhUNG. At pH 10.0, the recombinant human UNG had 66% residual activity compared with only 0.4% for the Atlantic cUNG. At 50 degrees C, cUNG had a half-life of 0.5 min compared with 8 min for the rhUNG. These activity and stability experiments reveal cold-adapted features in cUNG.  相似文献   

5.
Protease B has been isolated from Saccharomyces cerevisiae and purified in six steps as follows: autolysis of the yeast cells, ammonium sulfate fractionation, activation of the proteolytic enzymes, chromatography on DEAE-cellulose, chromatography on CM-cellulose and finally, a second chromatography on DEAE-cellulose. The preparation was shown to be homogeneous on polyacrylamide gels in the absence as well as in the presence of sodium dodecylsulfate. Furthermore, the molecular weight (43,000 daltons) and the isoelectric point (5.45) were in good agreement with earlier published values. The amino acid composition is reported. The absence of disulfide bonds in protease B has to be outlined. The amino acid residues of the protein have been found to be folded nearly quantitatively (at least 80%) in a beta-conformation as deduced from a circular dichroism study. Finally, the tryptophan residues (5 mol/mol protein) are largely buried in the hydrophobic core of the enzyme.  相似文献   

6.
7.
The amino acid sequence of a single polypeptide chain, B-4, from fowl feather barbs has been determined. The B-4 chain was found to consist of 96 amino acid residues and to have a molecular weight of 10206 in the S-carboxymethylated form. The N terminus of this protein was an N-acetylserine residue. The B-4 protein contained seven S-carboxymethylcysteine residues, six of which are located in the N-terminal region (residues 1-26), and other one in C terminus. The central region of the peptide chain was rich in hydrophobic residues. There were homologous amino acids at 66 positions in the sequences of the feather keratins of fowl, emu and silver gull. The variation (substitution, deletion and insertion) in sequence was found to be localized in both terminal sections of the polypeptide chain. The B-4 protein structure was predicted to contain beta-sheet (about 30%), turn and random-coil-like structure, and no alpha-helix. beta-Sheet structure is mostly located in the central region (residues 22-70). On the other hand, both terminal regions are almost devoid of secondary structure.  相似文献   

8.
R G von Tigerstrom 《Biochemistry》1982,21(25):6397-6403
Saccharomyces cerevisiae contains a membrane-bound mitochondrial nuclease. The enzyme was purified nearly 500-fold from sphaeroplasts of the organism by differential centrifugation, differential solubilization, heparin-agarose chromatography, and gel filtration. A final specific activity of 98 mumol min-1 (mg of protein)-1 was obtained. The enzyme required further purification to achieve homogeneity. Two peaks of activity were obtained after gel filtration with apparent molecular weights of 140000 and 57000. Otherwise, these two components have nearly identical characteristics. Without detergent the enzyme is insoluble and has very low activity. Zwittergent 3-14 or Triton X-100 in the presence of KCl could be used to solubilize and activate the enzyme. A number of other detergents were much less effective in solubilizing or activating the nuclease. The enzyme requires Mg2+ for activity, and this can be replaced to some degree by Mn2+ but not by Ca2+ or Zn2+. It is most active at pH 6.5-7.0 and degrades the substrate to small oligonucleotides with 5'-phosphate ends. The relative rates of hydrolysis were 100 for poly(A), 31 for ssDNA, 19 for RNA, 2.1 for dsDNA, and less than or equal to 0.2 for poly(C). Under the assay conditions used the enzyme appears to constitute about 90% of the total nuclease activity of the cell. The enzyme is unstable, especially at neutral and alkaline pH.  相似文献   

9.
1. Hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) from Saccharomyces cerevisiae was purified 9400-fold by affinity chromatography giving rise to an electrophoretically homogeneous preparation. 2. The molecular weight of the enzyme was determined by gel filtration with Sephadex G-100 and by sodium dodecylsulfate gel electrophoresis. Both methods reveal a molecular weight of 51,000. 3. The enzyme requires Mg2+ and has its pH optimum at 8.5. 4. Isoelectric focussing as well as gel electrophoresis of the purified extract reveals a single band which exhibits enzyme activity. The isoelectric point of the enzyme is 5.1. 5. The enzyme displays Michaelis-Menten kinetics with apparent Michaelis constants for hypoxanthine, guanine and phosphoribosylpyrophosphate of 23 microns, 18 microns, and 50 microns respectively.  相似文献   

10.
A PBS2 phage-coded inhibitor of uracil-DNA glycosylase activity from Bacillus subtilis has been purified extensively and characterized preliminary. The inhibitor has a relative S value of 1.44 +/- 0.08 measured by sedimentation in 15 to 40% glycerol density gradients. It is unusually stable to heating and to the presence of sodium dodecyl sulfate and/or 8 M urea. The inhibitor has no known cofactor requirement and is active in the presence of 10 mM EDTA. Inhibitor activity is sensitive to digestion with proteinase K, but is insensitive to DNase or RNase digestion. The purified inhibitor behaves anomalously during electrophoresis in poly-acrylamide gels containing sodium dodecyl sulfate; however, experiments designed to show that the inhibitor is a glycoprotein were negative. The inhibitor clearly contains a protein required for activity, however, the possibility that some other molecular component is part of the active inhibitor cannot be excluded.  相似文献   

11.
Uracil-DNA glycosylase from rat liver mitochondria, an inner membrane protein, has been purified approximately 575,000-fold to apparent homogeneity. During purification two distinct activity peaks, designated form I and form II, were resolved by phosphocellulose chromatography. Form I constituted approximately 85% while form II was approximately 15% of the total activity; no interconversion between the forms was observed. The major form was purified as a basic protein with an isoelectric point of 10.3. This enzyme consists of a single polypeptide with an apparent Mr of 24,000 as determined by recovering glycosylase activity from a sodium dodecyl sulfate-polyacrylamide gel. A native Mr of 29,000 was determined by glycerol gradient sedimentation. The purified enzyme had no detectable exonuclease, apurinic/apyrimidinic endonuclease, DNA polymerase, or hydroxymethyluracil-DNA glycosylase activity. A 2-fold preference for single-stranded uracil-DNA over a duplex substrate was observed. The apparent Km for uracil residues in DNA was 1.1 microM, and the turnover number is about 1000 uracil residues released per minute. Both free uracil and apyrimidinic sites inhibited glycosylase activity with Ki values of approximately 600 microM and 1.2 microM, respectively. Other uracil analogues including 5-(hydroxymethyl)uracil, 5-fluorouracil, 5-aminouracil, 6-azauracil, and 2-thiouracil or analogues of apyrimidinic sites such as deoxyribose and deoxyribose 5'-phosphate did not inhibit activity. Both form I and form II had virtually identical kinetic properties, and the catalytic fingerprints (specificity for uracil residues located in a defined nucleotide sequence) obtained on a 152-nucleotide restriction fragment of M13mp2 uracil-DNA were almost identical. These properties differentiated the mitochondrial enzyme from that of the uracil-DNA glycosylase purified from nuclei of the same source.  相似文献   

12.
Methionine aminopeptidase (MAP), which catalyzes the removal of NH2-terminal methionine from proteins, was isolated from Saccharomyces cerevisiae. The enzyme was purified 472-fold to apparent homogeneity. The Mr of the native enzyme was estimated to be 36,000 +/- 5,000 by gel filtration chromatography, and the Mr of the denatured protein was estimated to be 34,000 +/- 2,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pH optimum near 7.0, and its pI is 7.8 as determined by chromatofocusing on Mono P. The enzyme was inactivated by metalloprotease inhibitors (EDTA, o-phenanthroline and nitrilotriacetic acid), sulfhydryl-modifying reagents (HgCl2 and p-hydroxymercuribenzoic acid), and Zn2+. Yeast MAP failed to cleave methionine p-nitroanilide. Among 11 Xaa-Ala-Ser analogues (Xaa = Ala, Asp, Gln, Glu, Ile, Leu, Lys, Met, Phe, Pro, and Ser), MAP cleaved only Met-Ala-Ser. MAP also cleaved methionine from other tripeptides whose penultimate amino acid residue is relatively small and/or uncharged (e.g. Pro, Gly, Val, Thr, or Ser) but not when bulky and/or charged (Arg. His, Leu, Met, or Tyr). Yeast MAP displayed similar substrate specificities compared with those of Escherichia coli (Ben-Bassat, A., Bauer, K., Chang, S.Y., Myambo, K., Boosman, A., and Chang, S. (1987) J. Bacteriol. 169, 751-757) and Salmonella typhimurium MAP (Miller, C., Strauch, K. L., Kukral, A. M., Miller, J. L., Wingfield, P. T., Mazzei, G. J., Werlen, R. C., Garber, P., and Movva, N. R. (1987) Proc. Natl, Acad. Sci. U.S.A. 84, 2718-2722). In general, the in vitro specificity of yeast MAP is consistent with the specificity observed in previous in vivo studies in yeast (reviewed in Arfin, S. M., and Bradshaw, R. A. (1988) Biochemistry 27, 7979-7984).  相似文献   

13.
14.
An extracellular endo-polygalacturonase (PGase) produced by a mutant of Saccharomyces cerevisiae was isolated. The enzyme was regarded, immunologically, as a PGase belonging to the Kluyveromyces marxianus group. The enzyme had properties similar to the PGase from K. marxianus in heat and pH stability, and N-terminal amino acid sequence. However, the enzyme showed different properties in optimum pH and temperature, molecular weight, and reactivity in antiserum against PGase from K. marxianus, indicating that the enzyme has a different molecular structure from the PGase from K. marxianus.  相似文献   

15.
A 24 000-dalton protein [yeast eukaryotic initiation factor 4E (eIF-4E)] was purified from yeast Saccharomyces cerevisiae postribosomal supernatant by m7GDP-agarose affinity chromatography. The protein behaves very similarly to mammalian protein synthesis initiation factor eIF-4E with respect to binding to and elution from m7GDP-agarose columns and cross-linking to oxidized reovirus mRNA cap structures. Yeast eIF-4E is required for translation as shown by the strong and specific inhibition of cell-free translation in a yeast extract by a monoclonal antibody directed against yeast eIF-4E.  相似文献   

16.
The membrane-associated phospholipid biosynthetic enzyme CDP-diacylglycerol synthase (CTP:phosphatidate cytidylyltransferase, EC 2.7.7.41) was purified 2,300-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of mitochondrial membranes, CDP-diacylglycerol-Sepharose affinity chromatography, and hydroxylapatite chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radiation inactivation of mitochondrial associated and purified CDP-diacylglycerol synthase suggested that the molecular weight of the native enzyme was 114,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme preparation yielded two subunits with molecular weights of 56,000 and 54,000. Antibodies prepared against the purified enzyme immunoprecipitated CDP-diacylglycerol synthase activity and subunits. CDP-diacylglycerol synthase activity was dependent on magnesium ions and Triton X-100 at pH 6.5. Thio-reactive agents inhibited activity. The activation energy for the reaction was 9 kcal/mol, and the enzyme was thermally labile above 30 degrees C. The Km values for CTP and phosphatidate were 1 and 0.5 mM, respectively, and the Vmax was 4,700 nmol/min/mg. Results of kinetic and isotopic exchange reactions suggested that the enzyme catalyzes a sequential Bi Bi reaction mechanism.  相似文献   

17.
The membrane-associated phospholipid biosynthetic enzyme phosphatidylinositol kinase (ATP:phosphatidylinositol 4-phosphotransferase, EC 2.7.1.67) was purified 8,000-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of microsomal membranes, DE-52 chromatography, hydroxylapatite chromatography, octyl-Sepharose chromatography, and two consecutive Mono Q chromatographies. The procedure resulted in the isolation of a protein with a subunit molecular weight of 35,000 that was 96% of homogeneity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidylinositol kinase activity was associated with the purified Mr 35,000 subunit. Maximum phosphatidylinositol kinase activity was dependent on magnesium ions and Triton X-100 at pH 8. The true Km values for phosphatidylinositol and MgATP were 70 microM and 0.3 mM, and the true Vmax was 4,750 nmol/min/mg. The turnover number for the enzyme was 166 min-1. Results of kinetic and isotopic exchange reactions indicated that phosphatidylinositol kinase catalyzed a sequential Bi Bi reaction mechanism. The enzyme bound to phosphatidylinositol prior to ATP and phosphatidylinositol 4-phosphate was the first product released in the reaction. The equilibrium constant for the reaction indicated that the reverse reaction was favored in vitro. The activation energy for the reaction was 31.5 kcal/mol, and the enzyme was thermally labile above 30 degrees C. Phosphatidylinositol kinase activity was inhibited by calcium ions and thioreactive agents. Various nucleotides including adenosine and S-adenosylhomocysteine did not affect phosphatidylinositol kinase activity.  相似文献   

18.
19.
R L Nussbaum  C T Caskey 《Biochemistry》1981,20(16):4584-4590
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) was purified 12 000-fold to homogeneity from yeast by a three-step procedure including acid precipitation, anion-exchange chromatography, and guanosine 5' -monophosphate affinity chromatography. The enzyme is a dimer consisting of two, probably identical, subunits of Mr 29 500. The enzyme recognized hypoxanthine and guanine, but not adenine or xanthine, as substrates. An antiserum against both native and denatured enzyme has been raised and shown to be specific for the enzyme. The antiserum has no affinity for Chinese hamster or human HPRT but does recognize subunits of yeast HPRT as well as some cyanogen bromide fragments of the enzyme.  相似文献   

20.
Membrane-associated phosphatidate phosphatase (EC 3.1.3.4) was purified 9833-fold from the yeast Saccharomyces cerevisiae. The purification procedure included sodium cholate solubilization of total membranes followed by chromatography with DE53, Affi-Gel Blue, hydroxylapatite, Mono Q, and Superose 12. The procedure resulted in the isolation of a protein with a subunit molecular weight of 91,000 that was apparently homogeneous as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidate phosphatase activity was associated with the purified 91,000 subunit. The molecular weight of the native enzyme was estimated to be 93,000 by gel filtration chromatography with Superose 12. Maximum phosphatidate phosphatase activity was dependent on magnesium ions and Triton X-100 at pH 7. The Km value for phosphatidate was 50 microM, and the Vmax was 30 mumol/min/mg. The turnover number (molecular activity) for the enzyme was 2.7 x 10(3) min-1 at pH 7 and 30 degrees C. The activation energy for the reaction was 11.9 kcal/mol, and the enzyme was labile above 30 degrees C. Phosphatidate phosphatase activity was sensitive to thioreactive agents. Activity was inhibited by the phospholipid intermediate CDP-diacylglycerol and the neutral lipids diacylglycerol and triacylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号