共查询到20条相似文献,搜索用时 8 毫秒
1.
激光原子力显微镜观察肌动蛋白体外自组织纤维结构多态性的初步研究 总被引:1,自引:0,他引:1
利用原子力显微镜(atomic force microscope,AFM)技术,研究了肌动蛋白体外通过自组织过程形成的纤维结构及其多态性。肌动蛋白在体外通过自组织过程能够聚合形成离散的树状分支的纤维丛和具有不同直径的长纤维等高级纤维结构,表现出明显的结构多态性;与微丝工具药物鬼笔环肽干预下自装配形成的主要由单根微丝和微丝束等纤维成份构成的连续网络结构明显不同。 相似文献
2.
3.
4.
利用原子力显微镜(atomic force microscope,AFM)和透射电子显微镜(transmission electron microscope,WEM)技术,研究了低浓度肌动蛋白在体外简单热力学体系中,形成的自组织复合纤维结构。肌动蛋白在体外通过自组织过程能够聚合形成大尺度的、离散的、复杂的聚集纤维体系,分散的单根微丝较少;在微丝稳定剂鬼笔环肽干预下,肌动蛋白通过受调控的自装配过程,主要形成分散的单根微丝,以及少量由单根微丝组成的微丝束和纤维分支等简单微丝聚集结构。 相似文献
5.
用原子力显微镜(AFM)观察线性DNA并探讨其成像条件。用RT-PCR技术扩增柯萨奇B1病毒VP1基因DNA片段,纯化回收后配制成含和不含1mmol/LMgCl2的水溶液,DNA终浓度为100μg/ml。分别取20μl滴加在新鲜解理的云母片上,吸附1min,用滤纸吸去残液,氮气吹干,在室温下采用MultiModeAFMNanoscopeⅢa的敲击模式成像。同时比较新制备的和多次使用过的探针所获得图像的质量,对两种探针进行扫描电镜观察。电泳证明获得了0.83kb的VP1基因DNA线性片段。Mg2+存在时,DNA在云母片上吸附延展较好,所获图像质量优于无Mg2+时。新制备的探针较多次使用过的探针所获图象分辨率更高。DNA分子的表观宽度为18±2.9nm,高度为0.8±0.2nm。说明AFM能以高分辨率直接观察DNA分子,Mg2+的存在和高质量的探针有助于获得理想的图象。 相似文献
6.
Hans I-Chen Harn Chao-Kai Hsu Yang-Kao Wang Yi-Wei Huang Wen-Tai Chiu Hsi-Hui Lin 《Cell Adhesion & Migration》2016,10(4):368-377
Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. 相似文献
7.
应用原子力显微镜分析猪脂肪前体细胞的分化 总被引:2,自引:0,他引:2
脂肪形成过程中发生的异常变化与许多疾病的产生有着密切的关系。为深入了解脂肪形成的机制,利用原子力显微镜研究脂肪前体细胞向成熟脂肪细胞分化前后细胞形貌、超微结构和机械性能的变化。结果表明,脂肪前体细胞与成熟脂肪细胞在形貌上存在明显的差异。在超微结构的探测中成熟脂肪细胞表面粗糙度低于脂肪前体细胞。通过力曲线的分析得出,分化前后两种细胞的机械性质均发生改变。脂肪前体细胞在粘弹力、硬度和杨氏模量的研究中比成熟脂肪细胞都高出约20%。原子力显微镜在纳米尺度上分析脂肪前体细胞向成熟脂肪细胞分化过程中细胞膜的改变,其研究结果为进一步探讨脂肪形成机制提供可视化定量数据。 相似文献
8.
应用原子力显微镜观察小鼠免疫球蛋白G样品,结果不管是IgG1还是IgG1与IgG2的混合样品,在制样2-3d后,均发现有圆环状聚集区,也有部分圆面状聚集区域,一般环中心有核,核为IgG分子多聚体的再聚集,多聚体中亚基(单体)数目因环而异,在圆环和贺湎状区域外,也有零星分散的聚集体,不参与成环,另外,IgG1和IgG1 IgG2聚集情况有所不同,后者更倾向于形成圆面状聚集,另外,在聚集发生前,亚基已自组装形成各种形状的多聚体,然后多聚体进一步聚集形成各种圆环或圆面状,对免疫球蛋白G先自组装而后聚集的过程,从生物学,物理学角度作了初步解释。 相似文献
9.
The atomic force microscope (AFM) is a unique imaging tool that enables the tracking of single macromolecule events in response to physiological effectors and pharmacological stimuli. Direct correlation can therefore be made between structural and functional states of individual biomolecules in an aqueous environment. This review explores how time-lapse AFM has been used to learn more about normal and disease-associated biological processes. Three specific examples have been chosen to illustrate the capabilities of this technique. In the cell, actin polymerizes into filaments, depolymerizes, and undergoes interactions with numerous effector molecules (i.e., severing, capping, depolymerizing, bundling, and cross-linking proteins) in response to many different stimuli. Such events are critical for the function and maintenance of the molecular machinery of muscle contraction and the dynamic organization of the cytoskeleton. One goal is to use time-lapse AFM to examine and manipulate some of these events in vitro, in order to learn more about how these processes occur in the cell. Aberrant protein polymerization into amyloid fibrils occurs in a multitude of diseases, including Alzheimer's and type 2 diabetes. Local amyloid deposits may cause organ dysfunction and cell death; hence, it is of interest to learn how to interfere with fibril formation. One application of time-lapse AFM in this area has been the direct visualization of amyloid fibril growth in vitro. This experimental approach holds promise for the future testing of potential therapeutic drugs, for example, by directly visualizing at which level of fibril assembly (i.e., nucleation, elongation, branching, or lateral association of protofibrils) a given active compound will interfere. Nuclear pore complexes (NPCs) are large supramolecular assemblies embedded in the nuclear envelope. Transport of ions, small molecules, proteins, RNAs, and RNP particles in and out of the nucleus occurs via NPCs. Time-lapse AFM has been used to structurally visualize the response of individual NPC particles to various chemical and physical effectors known to interfere with nucleocytoplasmic transport. Taken together, such time-lapse AFM studies could provide novel insights into the molecular mechanisms of fundamental biological processes under both normal and pathological conditions at the single molecule level. 相似文献
10.
The interaction between ribosome-inactivating proteins (RIPs) and supercoiled DNA was observed with an atomic force microscope (AFM). It was found that RIPs can bind to both supercoiled DNA and the unwound double stranded loop region in supercoiled DNA. The RIPs hound to the supercoils can induce the conformational change of supercoiled DNA. Furthermore, the supercoiled DNA was relaxed and cleaved into nick or linear form by RIPs. It indicated that RIP seemed to be a supercoil-dependent DNA binding protein and exhibited the activity of su-percoil-dependent DNA endonuclease. 相似文献
11.
难溶性药用纳米微粒的原子力显微检测 总被引:3,自引:1,他引:3
建立用原子力显微镜(AFM)检测难溶性药用纳米微粒的方法。将纳米微粒配成一定浓度的悬浮液,以新鲜裂解的云母表面作为样品载体,在室温下用AFM的接触模式成像,用粒度分析软件进行粒度分析。以此方法对两种微粒(活性炭及氧化锌纳米微粒)进行了成像和测量,同时对两种样品进行透射电镜(TEM)观察。AFM检测结果显示,纳米活性炭微粒形态近似球形,表面较平滑,平均直径为(299±187)nm;纳米氧化锌微粒呈球形,平均直径(50±20)nm,与TEM检测结果具有较高一致性。该法简便可靠。 相似文献
12.
Hua Jin Hongxia Zhao Yong Chen Shuyuan Ma Hongyan Ye 《Biochemical and biophysical research communications》2010,391(4):1698-1130
The pathophysiological changes of erythrocytes are detected at the molecular scale, which is important to reveal the onset of diseases. Type 2 diabetes is an age-related metabolic disorder with high prevalence in elderly (or old) people. Up to now, there are no treatments to cure diabetes. Therefore, early detection and the ability to monitor the progression of type 2 diabetes are very important for developing effective therapies. Type 2 diabetes is associated with high blood glucose in the context of insulin resistance and relative insulin deficiency. These abnormalities may disturb the architecture and functions of erythrocytes at molecular scale. In this study, the aging- and diabetes-induced changes in morphological and biomechanical properties of erythrocytes are clearly characterized at nanometer scale using atomic force microscope (AFM). The structural information and mechanical properties of the cell surface membranes of erythrocytes are very important indicators for determining the healthy, diseased or aging status. So, AFM may potentially be developed into a powerful tool in diagnosing diseases. 相似文献
13.
Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope 总被引:4,自引:0,他引:4
The atomic force microscope (AFM) was used to analyse the contractile behaviour of embryonic chicken cardiomyocytes. The
mechanical pulsing of cardiomyocytes was analysed by observing active single cells as well as cells in a confluent layer.
When embedded in a confluent layer, owing to synchronisation, pulsing of the cells was often found to be very stable in terms
of frequency and amplitude of the beat, including negative as well as positive amplitudes. Nevertheless, owing to movements
of contraction centres within the layer, a flipping of the sign of the amplitude did sometimes also occur on a time scale
of minutes. In contrast, single cells often changed between active periods of pulsing and periods of complete quietness. Also
characteristic parameters like beat period and pulse amplitude were observed to be unstable. Finally, we combined the abilities
of the AFM to image adherent single cells and to record locally beat amplitudes, to characterise the pulsing behaviour of
single cells laterally resolved.
Received: 7 August 1998 / Revised version: 9 November 1998 / Accepted: 18 November 1998 相似文献
14.
应用原子力显微镜分析正常淋巴细胞和Jurkat细胞的形态和机械性质 总被引:4,自引:1,他引:4
淋巴细胞形态和机械性质的变化与人的健康、疾病的治疗和诊断有着密切关系。本研究利用原子力显微镜研究淋巴细胞和Jurkat细胞形态和机械性质。结果显示,这2种细胞的形态较为相似,但通过对力曲线的分析得出这2种细胞的机械性质明显不同。正常淋巴细胞粘弹力范围大致为(796.7±248.5)pN,而Jurkat细胞分布于(158.5±37.5)pN;正常淋巴细胞的杨氏模量(0.471kPa±0.081kPa)近4倍于Jurkat细胞(0.0964kPa±0.0229kPa);而Jurkat细胞(4.322mN/m±0.382mN/m)的硬度近2倍于正常淋巴细胞(2.278mN/m±0.488mN/m)。结果表明原子力显微镜能可在临床诊断上区分正常细胞与肿瘤细胞,即使两者形态区别不明显。 相似文献
15.
16.
Vicker MG 《Experimental cell research》2002,275(1):54-66
Actin filament (F-actin) assembly kinetics determines the locomotion and shape of crawling eukaryotic cells, but the nature of these kinetics and their determining reactions are unclear. Live BHK21 fibroblasts, mouse melanoma cells, and Dictyostelium amoebae, locomoting on glass and expressing Green Fluorescent Protein-actin fusion proteins, were examined by confocal microscopy. The cells demonstrated three-dimensional bands of F-actin, which propagated throughout the cytoplasm at rates usually ranging between 2 and 5 microm/min in each cell type and produced lamellipodia or pseudopodia at the cell boundary. F-actin's dynamic behavior and supramolecular spatial patterns resembled in detail self-organized chemical waves in dissipative, physico-chemical systems. On this basis, the present observations provide the first evidence of self-organized, and probably autocatalytic, chemical reaction-diffusion waves of reversible actin filament assembly in vertebrate cells and a comprehensive record of wave and locomotory dynamics in vegetative-stage Dictyostelium cells. The intensity and frequency of F-actin wavefronts determine locomotory cell projections and the rotating oscillatory waves, which structure the cell surface. F-actin assembly waves thus provide a fundamental, deterministic, and nonlinear mechanism of cell locomotion and shape, which complements mechanisms based exclusively on stochastic molecular reaction kinetics. 相似文献
17.
Colchicine is a drug commonly used for the treatment of gout, however, patients may sometimes encounter side-effects induced by taking colchicine, such as nausea, vomiting, diarrhea and kidney failure. In this regard, it is imperative to investigate the mechanism effects of colchicine on biological cells. In this paper, we present a method for the detection of mechanical properties of nephrocytes (VERO cells), hepatocytes (HL-7702 cells) and hepatoma cells (SMCC-7721 cells) in culture by atomic force microscope (AFM) to analyze the 0.1 μg/mL colchicine-induced effects on the nanoscale for two, four and six hours. Compared to the corresponding control cells, the biomechanical properties of the VERO and SMCC-7721 cells changed significantly and the HL-7702 cells did not considerably change after the treatment when considering the same time period. Based on biomechanical property analyses, the colchicine solution made the VERO and SMCC-7721 cells harder. We conclude that it is possible to reduce the division rate of the VERO cells and inhibit the metastasis of the SMCC-7721 cells. The method described here can be applied to study biomechanics of many other types of cells with different drugs. Therefore, this work provides an accurate and rapid method for drug screening and mechanical analysis of cells in medical research. 相似文献
18.
原子力显微镜观测血卟啉单甲醚对细菌光动力杀伤作用 总被引:2,自引:0,他引:2
[目的]探讨血卟啉单甲醚(Hematoporyrin monomethyl Ether,HMME)对革兰氏阳性(G )、阴性(G-)菌的光动力杀伤作用.[方法]通过平板菌落计数法和原子力显微镜(AFM),观察细菌与HMME作用前后形貌的变化.[结论]当HMME浓度为50 μg/mL,可见光(光功密度为200 mW/cm2)光照30min时90%以上的金黄色葡萄球菌(Staphyrlococcus aureus)能被杀死,无光照时对S.aureus杀灭效果显著.同等条件下,无论光照还是无光照,HMME对大肠杆菌(E.coli)无明显的杀伤作用.AFM图像显示,S.aureus细菌表面破坏严重,完全碎裂成鱼鳞状的片状堆积.对HMME作用后的E.coli扫描可见,菌体原来光滑的表面变成网格状的裂纹排列.[讨论]HMME对G 有明显的光失活效应,而对G-效果不明显.AFM的超微图像显示HMME对细菌细胞的攻击位点主要在细胞膜上.AFM为我们研究光敏剂对细菌的光动力损伤作用机制的可视化提供了依据. 相似文献
19.
20.
原子力显微技术在酶学研究中的应用 总被引:1,自引:0,他引:1
酶在生物体的生命活动中占有及其重要的地位,机体功能的和谐统一有赖于酶的作用。原子力显微技术(AFM)作为一门新发展起来的技术,为人们认识酶的结构与功能提供了又一新的窗口。AFM能够在生理条件下对生物样品进行三维成像,在分子水平上实时监测生理生化反应。AFM还能够在皮牛顿精度上测定分子间作用力。目前,AFM已用于单分子酶的化学性质及其作用原理的研究。本简述AFM在酶学中的应用情况。 相似文献