首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Rhizobia are a group of free-living soil bacteria known for their ability to symbiotically infect the roots of specific host plants as well as to produce siderophores in order to compete with other microorganisms for the limited availability of iron in the rhizosphere. In this study, Rhizobium leguminosarum ATCC 14479, which preferentially infects the red clover Trifolium pratense, was found to produce the trihydroxamate siderophore vicibactin (C33H55N6O15) under iron restricted conditions. In addition, two other iron-binding, siderophore-like compounds: C20H36N4O10, C31H55N6O15, were isolated and purified from the culture media. Due to the structural similarity of the latter compounds to vicibactin based on electrospray-mass spectrometry and nuclear magnetic resonance data, these heretofore unreported molecules are thought to be either modified or degraded products of vicibactin. Although vicibactin has previously been found to be commonly produced by other rhizobial strains, this is the first time it has been chemically characterized from a clover infecting strain of R. leguminosarum.  相似文献   

2.
Summary. For-Met-βAlaψ[CSNH]-Phe-OMe (3), For-Met-βAlaψ[CH2NH]-Phe-OMe (5), For-Met-NH-pC6H4-SO2-Phe-OMe (8a), For-Met-NH-mC6H4-SO2-Phe-OMe (8b) and the corresponding N-Boc precursors (2, 4, 7a, b) have been synthesized and their activity towards human neutrophils has been evaluated in comparison with that shown by the reference tripeptide For-Met-Leu-Phe-OMe (fMLF-OMe). Chemotaxis, lysozyme release and superoxide anion production have been measured. 1H NMR titration experiments and IR spectra have been discussed in order to ascertain the preferred solution conformation adopted by the tripeptide 3 with particular reference to the presence of a folded conformation centred at the centrally positioned thionated β-residue.  相似文献   

3.
Seven additional components, polyoxins C, D, E, F, G, H and I were isolated from polyoxin complex. They have molecular formulae corresponding to C11H15N3O8, C17H23N5O14, C17H23N5O13, C23H30N6O15, C17H25N5O12, C23H32N6O13 and C19H24N4O12, respectively. These polyoxins except inactive polyoxins C and I were highly active against various kinds of phytopathogenic fungi. The close structural similarity among them including polyoxins A and B is also discussed.  相似文献   

4.
Summary. The objective of this study was to determine the dose as well as duration of exposure-dependent effects of L-alanyl-L-glutamine, arginine or taurine on polymorphonuclear neutrophil (PMN) free α-keto acid profiles and, in a parallel study, on PMN immune functions. Exogenous L-alanyl-L-glutamine significantly increased PMN α-ketoglutarate, pyruvate PMN superoxide anion (O2) generation, hydrogen peroxide (H2O2) formation and released myeloperoxidase (MPO) activity. Arginine also led to significant increases in α-ketoglutarate, pyruvate, MPO release and H2O2 generation. Formation of O2 on the other hand was decreased by arginine. Incubation with taurine resulted in lower intracellular pyruvate and α-ketobutyrate levels, decreased O2 and H2O2 formation and a concomitant significantly increased MPO activity. We therefore believe that considerable changes in PMN free-α-keto-acid profiles, induced for example by L-alanyl-L-glutamine, arginine or taurine, may be one of the determinants in cell nutrition that considerably modulates the immunological competence of PMN.  相似文献   

5.
The interaction studies of CuII nalidixic acid–DACH chemotherapeutic drug entity, [C36H50N8O6Cu] with serum albumin proteins, viz., human serum albumin (HSA) and bovine serum albumin (BSA) employing UV–vis, fluorescence, CD, FTIR and molecular docking techniques have been carried out. Complex [C36H50N8O6Cu] demonstrated strong binding affinity towards serum albumin proteins via hydrophobic contacts with binding constants, K?=?3.18?×?105 and 7.44?×?104 M–1 for HSA and BSA, respectively implicating a higher binding affinity for HSA. The thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were also calculated and the interaction of complex [C36H50N8O6Cu] with HSA and BSA was found to be enthalpy and entropy favoured, nevertheless, complex [C36H50N8O6Cu] demonstrated higher binding affinity towards HSA than BSA evidenced from its higher binding constant values. Time resolved fluorescence spectroscopy (TRFS) was carried out to validate the static quenching mechanism of HSA/BSA fluorescence. The collaborative results of spectroscopic studies indicated that the microenvironment and the conformation of HSA and BSA (α–helix) were significantly perturbed upon interaction with complex [C36H50N8O6Cu]. Hirshfeld surfaces analysis and fingerprint plots revealed various intermolecular interactions viz., N–H····O, O–H····O and C–H····O linkages in a 2–dimensional framework that provide crucial information about the supramolecular architectures in the complex. Molecular docking studies were carried out to ascertain the preferential binding mode and affinity of complex [C36H50N8O6Cu] at the target site of HSA and BSA. Furthermore, only for Transmission electroscopy microscopy micrographs of HSA and BSA in presence of complex [C36H50N8O6Cu] revealed major protein morphological transitions and aggregation which validates efficient delivery of complex by serum proteins to the target site.

Communicated by Ramaswamy H. Sarma  相似文献   


6.
Summary. Some synthetic taurine analogues, namely ethanolamine-O-sulphate (EOS), N,N-dimethyltaurine (DMT), N,N,N-trimethyltaurine (TMT) and 2-aminoethylphosphonic acid (AEP) were shown to interact with rabbit brain GABAA- or GABAB-receptors, while (±)piperidine-3-sulfonic acid (PSA) inhibited the activity of rabbit brain 4-aminobutyrate transaminase. This suggests that they behave like direct/indirect GABA agonists or GABA antagonists and affect thermoregulation and gross motor behaviour (GMB) which are under GABA control. In the present study micromole (1.2–48) amounts of these compounds were i.c.v. injected in conscious, restrained rabbits while monitoring rectal temperature (RT), ear skin temperature (EST) and GMB. AEP, EOS, DMT and TMT induced a dose-related hyperthermia, ear vasoconstriction and excitation of GMB, while PSA induced a dose-related hypothermia, ear vasodilation and inhibition of GMB. EOS antagonized in a dose-related fashion hypothermia induced by 60 nmol THIP, a GABAA agonist, while AEP, DMT and TMT counteracted that induced by 8 nmol R(-)Baclofen, a GABAB agonist. In conclusion, EOS and AEP, DMT, TMT seem to act as GABAA and GABAB antagonists, respectively, while PSA behaves like an indirect GABA agonist, all affecting the central mechanisms which drive rabbit thermoregulation.  相似文献   

7.
Cornic G  Bukhov NG  Wiese C  Bligny R  Heber U 《Planta》2000,210(3):468-477
The role of cyclic electron transport has been re-examined in leaves of C3 plants because the bioenergetics of chloroplasts (H+/e = 3 in the presence of a Q-cycle; H+/ATP = 4 of ATP synthesis) had suggested that cyclic electron flow has no function in C3 photosynthesis. After light activation of pea leaves, the dark reduction of P700 (the donor pigment of PSI) following far-red oxidation was much accelerated. This corresponded to loss of sensitivity of P700 to oxidation by far-red light and a large increase in the number of electrons available to reduce P700+ in the dark. At low CO2 and O2 molar ratios, far-red light was capable of decreasing the activity of photosystem II (measured as the ratio of variable to maximal chlorophyll fluorescence, Fv/Fm) and of increasing light scattering at 535 nm and zeaxanthin synthesis, indicating formation of a transthylakoid pH gradient. Both the light-induced increase in the number of electrons capable of reducing far-red-oxidised P700 and the decline in Fv/Fm brought about by far-red in leaves were prevented by methyl viologen. Antimycin A inhibited CO2-dependent O2 evolution of pea leaves at saturating but not under limiting light; in its presence, far-red light failed to decrease Fv/Fm. The results indicate that cyclic electron flow regulates the quantum yield of photosystem II by decreasing the intrathylakoid pH when there is a reduction in the availability of electron acceptors at the PSI level (e.g. during drought or cold stresses). It also provides ATP for the carbon-reduction cycle under high light. Under these conditions, the Q-cycle is not able to maintain a H+/e ratio of 3 for ATP synthesis: we suggest that the ratio is flexible, not obligatory. Received: 23 February 1999 / Accepted: 19 August 1999  相似文献   

8.
Conversion of CO2 to organic compounds in hydrothermal systems is important in understanding prebiotic chemical evolution leading to the origin of life. However, organic compounds with carbon number of more than 3 have never been produced from dissolved CO2 in simulated hydrothermal experiments. In this paper, we report that not only CH4, C2H6 and C3H8, but also n-C4H10 and n-C5H12 could be produced from dissolved CO2 and H2 in the presence of cobalt-bearing magnetite at 300°C and 30 MPa. It is shown that unbranched alkanes in Anderson–Schulz–Flory distribution were the dominant hydrocarbon products produced from dissolved CO2 catalyzed by cobalt-bearing magnetite under certain hydrothermal conditions. It is proposed that magnetite with other transition metals may act potentially as effective mineral catalysts for abiotic formation of organic compounds from dissolved CO2 in hydrothermal systems.  相似文献   

9.
Summary. In continuation of our previous work dedicated to the detection of the oxidation products of aminoethylcysteine ketimine dimer by oxygen reactive species, we give here data for the identification of the α, β unsaturated sulfoxide as the main product of interaction of the dimer with H2O2. Identification has been done on the basis of mass spectrometry and NMR analyses of the product isolated by preparative chromatography. Received March 24, 1998, Accepted October 20, 1998  相似文献   

10.
Justicidin A, C22H18O7, mp 263°C and B, C21H16O6, mp 240°C were isolated as fish-killing components from Justicia Hayatai var. decumbens. The piscicidal activities of both compounds were demonstrated to be as strong as rotenone and about ten times stronger than that of pentachlorophenol.  相似文献   

11.
Wang SQ  Du QS  Zhao K  Li AX  Wei DQ  Chou KC 《Amino acids》2007,33(1):129-135
Summary. Recently Simmons et al. reported a new mechanism for SARS virus entry into target cells, where MDL28170 was identified as an efficient inhibitor of CTSL-meditated substrate cleavage with IC50 of 2.5 nmol/l. Based on the molecule fingerprint searching method, 11 natural molecules were found in the Traditional Chinese Medicines Database (TCMD). Molecular simulation indicates that the MOL376 (a compound derived from a Chinese medicine herb with the therapeutic efficacy on the human body such as relieving cough, removing the phlegm, and relieving asthma) has not only the highest binding energy with the receptor but also the good match in geometric conformation. It was observed through docking studies that the van der Waals interactions made substantial contributions to the affinity, and that the receptor active pocket was too large for MDL21870 but more suitable for MOL736. Accordingly, MOL736 might possibly become a promising lead compound for CTSL inhibition for SARS therapy.  相似文献   

12.
Oien D  Moskovitz J 《Amino acids》2007,32(4):603-606
Summary. The major enzyme of the methionine sulfoxide reductase (Msr) system is MsrA. Senescing msrA knockout mother yeast cells accumulated significant amounts of protein-carbonyl both at 5 generation-old (young) and 21 generation-old (old) cultures, while the control mother cells showed significant levels of protein-carbonyl mainly in the old culture. The Msr activities of both yeast strains declined with age and exposure of cells to H2O2 caused an accumulation of protein-carbonyl especially in the msrA knockout strain. It is suggested that a compromised MsrA activity may serve as a marker for non-replicative aging.  相似文献   

13.
Summary. The 1-(N-trifluoroacetylamino)alkylphosphonic acids (TFA-AAP) – sub-products in the synthesis of O,O-dialkyl 1-(N-trifluoroacetylamino)alkylphosphonates and O,O-diethyl 1-aminoalkylphosphonates, were synthesized in two-stage transformations of 1-aminoalkylphosphonic acids including: trifluoroacetylation of 1-aminoalkylphosphonic acids (AAP) using a trifluoroacetic anhydride/trifluoroacetic acid reagent (AAP + TFAA/TFA→2) and subsequent hydrolysis of the intermediary compounds 2 into desired TFA-AAP (2→TFA-AAP). These intermediates 2 presented mixtures of the type of mixed anhydrides of TFAA and 1-(N-trifluoroacetylamino)alkylphosphonic, pyrophosphonic and polyphosphonic acids, which underwent rapid and quantitative conversion to corresponding TFA-AAP during treatment with an excess of water. The title acids were isolated by direct evaporation of the corresponding post-reaction mixtures, and their physicochemical proprieties, including deacylation abilities, were determined. TFA-AAP compounds can be re-converted into the starting amino acids AAP under respectively mild conditions (AAP→TFA-AAP→AAP).  相似文献   

14.
Almost all about citrulline in mammals   总被引:2,自引:0,他引:2  
Summary. Citrulline (Cit, C6H13N3O3), which is a ubiquitous amino acid in mammals, is strongly related to arginine. Citrulline metabolism in mammals is divided into two fields: free citrulline and citrullinated proteins. Free citrulline metabolism involves three key enzymes: NO synthase (NOS) and ornithine carbamoyltransferase (OCT) which produce citrulline, and argininosuccinate synthetase (ASS) that converts it into argininosuccinate. The tissue distribution of these enzymes distinguishes three “orthogonal” metabolic pathways for citrulline. Firstly, in the liver, citrulline is locally synthesized by OCT and metabolized by ASS for urea production. Secondly, in most of the tissues producing NO, citrulline is recycled into arginine via ASS to increase arginine availability for NO production. Thirdly, citrulline is synthesized in the gut from glutamine (with OCT), released into the blood and converted back into arginine in the kidneys (by ASS); in this pathway, circulating citrulline is in fact a masked form of arginine to avoid liver captation. Each of these pathways has related pathologies and, even more interestingly, citrulline could potentially be used to monitor or treat some of these pathologies. Citrulline has long been administered in the treatment of inherited urea cycle disorders, and recent studies suggest that citrulline may be used to control the production of NO. Recently, citrulline was demonstrated as a potentially useful marker of short bowel function in a wide range of pathologies. One of the most promising research directions deals with the administration of citrulline as a more efficient alternative to arginine, especially against underlying splanchnic sequestration of amino acids. Protein citrullination results from post-translational modification of arginine; that occurs mainly in keratinization-related proteins and myelins, and insufficiencies in this citrullination occur in some auto-immune diseases such as rheumatoid arthritis, psoriasis or multiple sclerosis.  相似文献   

15.
Häusler RE  Schlieben NH  Flügge UI 《Planta》2000,210(3):383-390
 Transgenic tobacco (Nicotiana tabacum L.) plants with decreased and increased transport capacities of the chloroplast triose phosphate/phosphate translocator (TPT) were used to study the control the TPT exerts on the flux of starch and sucrose biosynthesis, as well as CO2 assimilation, respiration and photosynthetic electron transport. For this purpose, tobacco lines with an antisense repression of the endogenous TPT (αTPT) and tobacco lines overexpressing a TPT gene from Flaveria trinervia (FtTPT) were used. In ambient CO2, there was no or little effect of altered TPT transport activities on either rates of photosynthetic electron transport and/or CO2 assimilation. However, in elevated CO2 (1500 μl · l−1) and low O2 (2%) the TPT exerted strong control on the rate of CO2 assimilation (control coefficient for the wild type; CJA TPT=0.30) in saturating light. Similarly, the incorporation of 14C into starch in high CO2 was increased in tobacco plants with decreased TPT activity, but was reduced in plants overexpressing the TPT from F. trinervia. Thus, the TPT exerted negative control on the rate of starch biosynthesis with a CJStarch TPT=−0.19 in the wild type estimated from a hyperbolic curve fitted to the data points. This was less than the positive control strength on the rate of sucrose biosynthesis (CJSuc TPT=0.35 in the wild type). Theoretically, the positive control exerted on sucrose biosynthesis should be numerically identical to the negative control on starch biosynthesis unless additional metabolic pathways are affected. The rate of dark respiration showed some correlation with the TPT activity in that it increased in FtTPT overexpressors, but decreased in αTPT plants with an apparent control coefficient of CJRes TPT=0.24. If the control on sucrose biosynthesis is referred to as “gain of carbon” (positive control) and the control on starch biosynthesis as well as dark respiration as a “loss of carbon” (negative control) for sucrose biosynthesis and subsequent export, the sum of the control coefficients on dark respiration and starch biosynthesis would be numerically similar to the control coefficient on the rate of sucrose biosynthesis. There was also some control on the rate of photosynthetic electron transport, but only at high light and in elevated CO2 combined with low O2. The control coefficient for the rate of photosynthetic electron transport was CJETR TPT=0.16 in the wild type. Control coefficients were also calculated for plants with elevated and lowered TPT activity. Furthermore, the extent to which starch degradation/glucose utilisation compensates for the lack of triose phosphate export was assessed. The TPT also exerted control on metabolite contents in air. Received: 26 March 1999 / Accepted: 21 August 1999  相似文献   

16.
Chia DW  Yoder TJ  Reiter WD  Gibson SI 《Planta》2000,211(5):743-751
Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C3 plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C3 plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean, Glycine max (L.) Merr., contain significant quantities of fumaric acid. In fact, fumaric acid can accumulate to levels of several milligrams per gram fresh weight in Arabidopsis leaves, often exceeding those of starch and soluble sugars. Fumaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Moreover, Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport. Received: 11 February 2000 / Accepted: 1 April 2000  相似文献   

17.
In the screening for inhibitors of cyclic adenosine-3′,5′-monophosphate phosphodiesterase, two compounds, PDE-I (C13H13N3O5) and PDE-II (C14H14N2O5), were isolated from culture filtrates of a Streptomyces. Concentrations for 50% inhibitions of PDE-I and PDE-II against the high Km enzyme were 15 µm and 13 µm, and those against the low Km enzyme were 65 µm and 130 µm, respectively. Production, isolation and characterization of these compounds are described.  相似文献   

18.
Isolation of luminophores from the mycelium of a luminous fungus Neonothopanus nambi is reported. In addition to the emission peak with a maximum at 520–530 nm (the wavelength of visible green light) that corresponded to the maximum of light emission by the fungus in vivo, the fluorescence spectra of the raw extracts contained a peak with a maximum in the visible blue-light range. The luminophore that emitted the blue light was an individual compound with a molecular weight of 894 Da. Calculations that took the isotope composition of chemical elements into account pointed at C52H65N2O11, C51H65N4O10, C53H61N6O7, C47H65N4O13, and C46H65N6O12 as the putative chemical formulae of the luminophore. A sample that contained substances of a yellow color was obtained; these substances emitted fluorescence at the wavelengths of green visible light. The luminophores in this sample probably included riboflavin or derivatives thereof (flavin mononucleotide or flavin adenine dinucleotide).  相似文献   

19.
Summary. In this study, polyamine oxidase from maize (MPAO), which is involved in the terminal catabolism of spermidine and spermine to produce an aminoaldehyde, 1,3-diaminopropane and H2O2, has been conditionally expressed at high levels in the nucleus of MCF-7 human breast cancer cells, with the aim to interfere with polyamine homeostasis and cell proliferation. Recombinant MPAO expression induced accumulation of a high amount of 1,3-diaminopropane, an increase of putrescine levels and no alteration in the cellular content of spermine and spermidine. Furthermore, recombinant MPAO expression did not interfere with cell growth of MCF-7 cells under normal conditions but it did confer higher growth sensitivity to etoposide, a DNA topoisomerase II inhibitor widely used as antineoplastic drug. These data suggest polyamine oxidases as a potential tool to improve the efficiency of antiproliferative agents despite the difficulty to interfere with cellular homeostasis of spermine and spermidine. Authors’ address: Dr. Paraskevi Tavladoraki, Department of Biology, University ‘Roma Tre’, Viale G. Marconi 446, 00146 Rome, Italy  相似文献   

20.
New tailored Cu(II) & Zn(II) metal-based antitumor drug entities were synthesized from substituted benzothiazole o?vanillin Schiff base ligands. The complexes were thoroughly characterized by elemental analysis, spectroscopic studies {IR, 1H & 13C NMR, ESI?MS, EPR} and magnetic susceptibility measurements. The structure activity relationship (SAR) studies of benzothiazole Cu(II) & Zn(II) complexes having molecular formulas [C30H22CuN5O7S2], [C30H20Cl2CuN5O7S2], [C30H20CuF2N5O7S2], [C30H22N4O4S2Zn], [C30H20Cl2N4O4S2Zn], and [C30H20F2N5O7S2Zn], with CT?DNA were performed by employing absorption, emission titrations, and hydrodynamic measurements. The DNA binding affinity was quantified by K b and K sv values which gave higher binding propensity for chloro-substituted Cu(II) [C30H20Cl2CuN5O7S2] complex, suggestive of groove binding mode with subtle partial intercalation. Molecular properties and drug likeness profile were assessed for the ligands and all the Lipinski’s rules were found to be obeyed. The antimicrobial potential of ligands and their Cu(II) & Zn(II) complexes were screened against some notably important pathogens viz., E. coli, S. aureus, P. aeruginosa, B. subtilis, and C. albicans. The cytotoxicity of the complexes [C30H20Cl2CuN5O7S2], [C30H20CuF2N5O7S2], [C30H20Cl2N4O4S2Zn], and [C30H20F2N5O7S2Zn] were evaluated against five human cancer cell lines viz., MCF?7 (breast), MIA?PA?CA?2 (pancreatic), HeLa (cervix) and Hep?G2 (Hepatoma) and A498 (Kidney) by SRB assay which revealed that chloro-substituted [C30H20Cl2CuN5O7S2] complex, exhibited pronounced specific cytotoxicity with GI50 value of 4.8 μg/ml against HeLa cell line. Molecular docking studies were also performed to explore the binding modes and orientation of the complexes in the DNA helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号