共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
K Mann 《Nucleic acids research》1993,21(8):1697-1704
Purified SV40 T antigen has been assayed for topoisomerase activity. The ability to relax negatively-supercoiled SV40 DNA was found in preparations of T antigen purified either from human 293 cells infected with Ad5-SVR111 virus or from insect Sf9 cells infected with recombinant baculovirus 941T. The T antigen-associated relaxing activity was stimulated by MgCl2 and was not dependent on ATP, suggesting that it is not due to cellular topoisomerase II. The topoisomerase activity was immunoprecipitated by a monoclonal antibody specific for T antigen, but not by a control monoclonal antibody. In addition, immunoblotting of purified T antigen from human 293 cells with antihuman topoisomerase I and anti-human topoisomerase II antibodies failed to detect cellular topoisomerases I or II. Sedimentation analysis of purified T antigen revealed that the topoisomerase activity co-sedimented with the hexameric form of T antigen at 23S. The topoisomerase activity is, therefore, either inherent to T antigen or due to a cellular topoisomerase I tightly bound to, and co-purifying with, T antigen. 相似文献
3.
4.
Topoisomerase I is preferentially associated with normal SV40 replicative intermediates, but is associated with both replicating and nonreplicating SV40 DNAs which are deficient in histones. 下载免费PDF全文
J J Champoux 《Nucleic acids research》1992,20(13):3347-3352
Based on the use of equilibrium centrifugation in CsCl to separate covalent complexes between topoisomerase I and DNA from protein-free DNA, it was concluded previously that the topoisomerase is preferentially associated with replicating SV40 DNA (Champoux, J. J. 1988. J. Virol. 62:3675-3683). One explanation for the failure to find the enzyme associated with nonreplicating viral DNA is that most of the completed DNA is rapidly sequestered for encapsidation and inaccessible to topoisomerase I. This explanation has been ruled out in the present work by the finding that topoisomerase I in COS-1 cells is also preferentially associated with the replicative form of an SV40 origin-containing plasmid that lacks the genes coding for the virion structural proteins and therefore cannot be encapsidated. Thus it appears that some structural feature of the replicating DNA or the replication complex specifically recruits the topoisomerase to the DNA. SV40 DNA which is produced in the presence of the protein synthesis inhibitor, puromycin, is deficient in histones and as a result lacks normal chromatin structure. Topoisomerase I was found to be associated with SV40 DNA under these conditions whether or not it was replicating. This observation is interpreted as an indication that under normal conditions, chromatin structure limits access of topoisomerase I to the nonreplicating viral DNA. 相似文献
5.
6.
Purified preparations of simian virus 40 (SV40) large tumor antigen (LT) from three different sources, including LT expressed from a recombinant baculovirus, were found to relax negatively supercoiled cyclic DNA molecules, whether or not they contained SV40 sequences. Relaxation was stimulated by MgCl2 but not by ATP, and inhibited by camptothecin, suggesting the involvement of an enzymatic activity similar to that of topoisomerase I (topo I). However, the pH requirements for relaxation by respectively LT and topo I are different. Also, antibodies reacting with LT inhibited relaxation by preparations of LT but not topo I, whereas antibodies inhibiting relaxation by topo I had no effect on relaxation by LT. Reconstruction experiments suggested that both procedures used to purify LT, immunoaffinity chromatography and DEAE-Sepharose chromatography, separate topo I from LT. Finally, relaxing activity was found in over 40 preparations of LT, and in the few instances where activity could not be found, it probably had been lost during storage, rather than absent from the start. Whereas these results seem to exclude that the activity being detected is that of a contaminant of LT, they would be consistent with this activity being that of a stable topo-LT complex, or else intrinsic to LT itself. 相似文献
7.
We have analysed S1 sensitivity of SV40 minichromosomes isolated from the nuclei of infected cells at the late stage of infection. We show that a fraction of purified minichromosomes is sensitive towards double-strand cleavage by S1 nuclease. The pattern of specific cleavage reminiscent of that found for subcloned fragment under supercoiling is superimposed upon apparently random double-strand cuts along the entire regulatory region. Therefore, the cleavage sites are not exclusively confined to the regions with the reported alternate DNA conformation. 相似文献
8.
9.
10.
11.
We operationally define two forms of SV40 minichromosomes, a 75S-form, prepared at low salt concentration, referred to as native minichromosomes, and a 50S-form, obtained after treatment with 0.5M potassium acetate, the salt-treated minichromosomes. Both preparations of minichromosomes serve well as templates for replication in vitro. Their respective replication products are strikingly different: replicated native minichromosomes contain a densely packed array of the maximal number of nucleosomes whereas replicated salt-treated minichromosomes carry, on average, half of the maximal number. We conclude that in both cases parental nucleosomes are transferred to progeny DNA, and, in addition, that an assembly of new nucleosomes occurs during the replication of native minichromosomes. This is apparently due to the presence of a nucleosome assembly factor as a constituent of native minichromosomes that dissociates upon treatment with salt. We further show that preparations of minichromosomes usually contain significant amounts of copurifying hnRNP particles and SV40 virion precursor particles. However, these structures do not detectably affect the replication and the chromatin assembly reactions. 相似文献
12.
Re-replication of SV40 minichromosomes is inhibited at the stage of chain elongation. 总被引:1,自引:0,他引:1 下载免费PDF全文
The template activities of protein-free SV40 DNA and SV40 minichromosomes for DNA re-replication are compared in in vitro replication assays. Density substitution experiments and two-dimensional gel electrophoresis show that protein-free DNA can replicate for at least two cycles whereas salt-treated minichromosomes replicate only once. Re-replication of minichromosomes is blocked at the stage of replicative chain elongation suggesting that replicatively assembled chromatin has structural features that prevent a second round of replication. 相似文献
13.
14.
Determination of the DNA conformation of the simian virus 40 (SV40) enhancer in SV40 minichromosomes 总被引:1,自引:0,他引:1
The simian virus 40 (SV40) enhancer contains three 8-bp purine-pyrimidine alternating sequences which are known to adopt the left-handed Z-DNA conformation in vitro. In this paper, we have undertaken the determination of the DNA conformation adopted by these Z-motifs in the SV40 minichromosome. We have analyzed the presence of Z-DNA through the change in linkage which should accompany formation of this left-handed conformation. Our results indicate that, regardless of the precise moment of the viral lytic cycle at which minichromosomes are harvested and the condition of the transfected DNA, either relaxed or negatively supercoiled, none of the three Z motifs of the SV40 enhancer exist to a significant extent as Z-DNA in SV40 minichromosomes. The SV40 enhancer adopts predominantly a right-handed B-DNA conformation in vivo. 相似文献
15.
Preferential association of uracil-DNA glycosylase activity with replicating SV40 minichromosomes 总被引:3,自引:0,他引:3
H Krokan 《FEBS letters》1981,133(1):89-91
16.
17.
18.
'Sliding' of nucleosomes along DNA under nearly physiological conditions was studied using treatment of SV 40 minichromosomes with the single-cut restriction endonucleases EcoRI and BamHI. Each enzyme can convert no more than 20-25% of the circular DNA molecules of minichromosomes into the linear form irrespective of the presence of histone H1. This suggests absence of the nucleosomes lateral migration (sliding) along DNa at least in the vicinity of the restriction endonucleases cleavage sites during several hours of incubation. The sites available for EcoRI and BamHI in minichromosomes seem to be located predominantly in the spacer DNA regions of nucleosomes. Introduction of only one double-strand (but not single-strand) break into the DNA of minichromosomes stripped of histone H1 is sufficient to induce redistribution of the nucleosome core particles due to their sliding along DNA. Thus, sliding of the nucleosome core particles can be induced under physiological conditions by rather low energy expenditures. 相似文献
19.
Isolation of Z-DNA binding proteins from SV40 minichromosomes: evidence for binding to the viral control region 总被引:18,自引:0,他引:18
Proteins dissociated from SV40 minichromosomes by increasing NaCl concentration were tested for their binding to Z-DNA [Br-poly(dG-dC)] and B-DNA [poly (dG-dC)]. Z-DNA binding proteins are largely released in 0.2 M NaCl whereas most B-DNA binding proteins are not released until 0.6 M NaCl. Incubation of SV40 minichromosomes with Z-DNA-Sephadex in low salt solution results in proteins with Z-DNA binding activity (PZ proteins). These proteins bind to negatively supercoiled DNAs containing left-handed Z-DNA but not to relaxed DNAs. They compete with anti-Z-DNA antibodies in binding to negatively supercoiled DNAs. The binding is tighter to negatively supercoiled SV40 DNA than to other plasmids, suggesting sequence-specific Z-DNA binding. PZ proteins binding to negatively supercoiled SV40 DNA interfere with cleavage at the Sph I sites, within the 72 bp repeat sequences of the viral control region, but not with cleavage at the Bgl I site, at the origin of replication. Removal of PZ proteins also exposes the Sph I sites in the SV40 minichromosomes while addition of PZ proteins makes the sites inaccessible. 相似文献
20.
Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model. 总被引:1,自引:1,他引:1 下载免费PDF全文
The structure of SV40 minichromosomes has been studied by cryo-electron microscopy of vitrified thin layers of solution. In high-salt buffer (130 mM NaCl), freshly prepared minichromosomes are condensed into globules 30 nm or more in diameter. On the micrograph, they appear to be formed by the close packing of 10 nm granules which give rise to a 10 nm reflection in the optical diffractogram. The globules can adopt many different conformations. At high concentration, they fuse into a homogeneous 'sea' of closely packed 10 nm granules. In low-salt buffer (less than 10 mM NaCl), the globules open, first into 10 nm filaments, and then into nucleosome-strings. The 'liquid drop' model is proposed to explain the condensed structure of the minichromosome in high-salt buffer: nucleosomes stack specifically on top of one another, thus forming the 10 nm filaments. 10 nm filaments in turn, tend to aggregate laterally. Optimizing both these interactions results in the condensation of 10 nm filaments or portions thereof into a structure similar to that of a liquid. Some implications of this model for the structure of cellular chromatin are discussed. 相似文献