首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lambda attB-attP is a derivative of bacteriophage lambda that contains both attB and attP, two sites required for integrative recombination. Lambda attB-attP can undergo int-mediated recombination to yield progeny phages whose DNA is 15% shorter than that of the parental phage. We have studied intracellular phage DNA from an infection of lysogenic bacteria with λattB-attP in the presence of int gene product, rifampicin and chloramphenicol. The majority of the intracellular phage DNA consisted of circles with lengths of 17.51, 15.09 and 2.38 μm. Partial denaturation mapping confirmed that the 15.09 and the 2.38-μm molecules arose by an int-mediated intramolecular recombination reaction of the type predicted by the Campbell (1962) model. A minor proportion of the circles (3%) were much larger (33.9, 30.2 and 4.7 μm); in these cases denaturation mapping indicated that both intra- and intermoleeular recombination could take place.  相似文献   

2.
Excision of the lambda prophage from the chromosome of its Escherichia coli host requires the products of the two viral genes int and xis. This paper reports a purification of the lambda xis gene product using a complementation assay in which functional Xis must be added to purified Int and an E. coli-derived host factor extract. Excisive recombination between a left (attL) and right (attR) prophage attachment site cloned on the same plasmid DNA substrate occurred efficiently under these conditions. Purified Int and Xis together could not carry out excision in vitro unless an extract derived from the E. coli host was added; purified integration host factor satisfied this requirement. Xis appears to have a molecular weight of 8800 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. It possesses no detectable endonuclease or topoisomerase activities, does not appear to bind DNA to filters, and does not increase the ability of Int to bind DNA. The addition of Xis not only stimulated excisive recombination in vitro but also inhibited integrative recombination. Xis protected Int protein from heat inactivation, suggesting a possible interaction between the two proteins. In light of these observations, possible roles for Xis in recombination are discussed.  相似文献   

3.
4.
We have studied the excision reaction of bacteriophage lambda, both in vivo and in vitro, using as a substrate a λatt2(L × R) phage carrying both the right and left-hand prophage attachment sites. Int and Xis are provided by induction of the heat-inducible defective prophage, λc1857 ΔH1. After a brief induction (5 min) of these cells, excisive recombination is blocked in the presence of the DNA gyrase inhibitor, coumermycin. However, after a longer induction (greater than 30 min) excisive recombination occurs efficiently under conditions where λ integrative recombination is inhibited by coumermycin. In such extensively induced coumermycin-treated cells, infecting λatt2(L × R) DNA is not supercoiled, and recombinants are found among the relaxed covalently closed circular DNA.In vitro, starting with a hydrogen-bonded λatt2 DNA substrate, excision is insensitive to high concentrations of coumermycin and novobiocin. To study the DNA substrate requirements for excisive recombination in more detail, we have developed a restriction fragment assay for excisive recombination. With this assay, we demonstrate that supercoiled, hydrogen-bonded, and linear λatt2 DNA molecules are all efficient substrates in the in vitro excision reaction. Spermidine is required but ATP and Mg2+ are not. We conclude that supercoiling is not an absolute requirement for site-specific recombination of λ.  相似文献   

5.
6.
The changes in supercoiling that accompany site-specific recombination have been measured. In each experiment, the substrate was a circle that contained two attachment sites oriented as an inverted repeat; recombination between the sites inverts one segment of the circle with respect to the other. Using conditions developed in the accompanying work, a measurable amount of the recombinant is in the form of unknotted, simple circles. The difference between the topological linking number of this product relative to that of the substrate can be determined directly from the change in mobility during agarose gel electrophoresis. With partially supercoiled substrates, both integrative and excisive recombination are characterized by a unique change in linking number, a relaxation of two topological turns. For excisive recombination, it has been possible to study closed circular substrates that lack supercoils. In this case, changes in linking number of both +2 and -2 are observed. These results are used to evaluate various proposals for synapsis and strand exchange in bacteriophage lambda site-specific recombination.  相似文献   

7.
The phage-encoded Xis protein is the major determinant controlling the direction of recombination in phage lambda. Xis is a winged-helix DNA binding protein that cooperatively binds to the attR recombination site to generate a curved microfilament, which promotes assembly of the excisive intasome but inhibits formation of an integrative intasome. We find that lambda synthesizes surprisingly high levels of Xis immediately upon prophage induction when excision rates are maximal. However, because of its low sequence-specific binding activity, exemplified by a 1.9 A co-crystal structure of a non-specifically bound DNA complex, Xis is relatively ineffective at promoting excision in vivo in the absence of the host Fis protein. Fis binds to a segment in attR that almost entirely overlaps one of the Xis binding sites. Instead of sterically excluding Xis binding from this site, as has been previously believed, we show that Fis enhances binding of all three Xis protomers to generate the microfilament. A specific Fis-Xis interface is supported by the effects of mutations within each protein, and relaxed, but not completely sequence-neutral, binding by the central Xis protomer is supported by the effects of DNA mutations. We present a structural model for the 50 bp curved Fis-Xis cooperative complex that is assembled between the arm and core Int binding sites whose trajectory places constraints on models for the excisive intasome structure.  相似文献   

8.
Summary Recombination between the tandem duplicated segments of b221a106-15 yields unduplicated (single-copy) b221 phage. The apparent frequency of intramolecular events among these recombinations was determined for both cellular (Rec) and bacteriophage (Red) generalized recombination systems. The progeny from single-cycle growth experiments with genetically marked duplication phages were treated with EDTA to inactivate all but the singlecopy phages produced by recombination. Analysis of the genotypes of the EDTA-resistant phages suggested that intramolecular events were about 1 to 5 times as frequent as intermolecular ones. While the results suggest that intramolecular events are not intrinsically forbidden, the quantitative values for the ratio depend on the assumption that intracellular phage chromosomes are completely mixed.  相似文献   

9.
10.
Orientation-dependent recombination hotspot activity in bacteriophage lambda.   总被引:14,自引:0,他引:14  
Promoters of genetic exchange by the Escherichia coli Rec system, Chi elements, have been analyzed in λ phages carrying bacterial EcoRI restriction fragments. Some fragments confer Chi+ phenotype in one orientation and Chi? in the opposite orientation. The inactivity of Chi in one orientation explains why all active Chi elements in λ manifest a certain recombinational bias of the same sense.When these studies were undertaken, we rather expected to find two classes of Chi, one class which stimulated recombinant formation stronger to its left and one class stimulating recombinant formation more strongly to its right. The failure to find the second class is now understandable by supposing that the orientation of Chi which would have permitted it to act rightward is the orientation in which Chi has no activity at all. Several models are proposed for the orientation dependence of Chi activity.  相似文献   

11.
The site-specific recombinase (Int) of bacteriophage lambda is a heterobivalent DNA-binding protein and is composed of three domains as follows: an amino-terminal domain that binds with high affinity to "arm-type" sequences within the recombination target DNA (att sites), a carboxyl-terminal domain that contains all of the catalytic functions, and a central domain that contributes significantly to DNA binding at the "core-type" sequences where DNA cleavage and ligation are executed. We constructed a family of core-type DNA oligonucleotides, each of which contained the photoreactive analog 4-thiodeoxythymidine (4-thioT) at a different position. When tested for their respective abilities to promote covalent cross-links with Int after irradiation with UV light at 366 nm, one oligonucleotide stood out dramatically. The 4-thioT substitution on the DNA strand opposite the site of Int cleavage led to photo-induced cross-linking efficiencies of approximately 20%. The efficiency and specificity of Int binding and cleavage at this 4-thioT-substituted core site was shown to be largely uncompromised, and its ability to participate in a full site-specific recombination reaction was reduced only slightly. Identification of the photo-cross-linked residue as Lys-141 in the central domain provides, along with other results, several insights about the nature of core-type DNA recognition by the bivalent recombinases of the lambda Int family.  相似文献   

12.
Binding of cI repressor to DNA fragments containing the three specific binding sites of the right operator (OR) of bacteriophage lambda was studied in vitro over the temperature range 5-37 degrees C by quantitative footprint titration. The individual-site isotherms, obtained for binding repressor dimers to each site of wild-type OR and to appropriate mutant operator templates, were analyzed for the Gibbs energies of intrinsic binding and pairwise cooperative interactions. It is found that dimer affinity for each of the three sites varies inversely with temperature, i.e., the binding reactions are enthalpy driven, unlike many protein-DNA reactions. By contrast, the magnitude of the pairwise cooperativity terms describing interaction between adjacently site-bound repressor dimers is quite small. This result in combination with the recent finding that repressor monomer-dimer assembly is highly enthalpy driven (with delta H degrees = -16 kcal mol-1) [Koblan, K. S., & Ackers, G. K. (1991) Biochemistry 30, 7817-7821] indicates that the associative contacts between site-bound repressors that mediate cooperativity are unlikely to be the same as those responsible for dimerization. The intrinsic binding enthalpies for all three sites are negative (exothermic) and nearly temperature-invariant, indicating no heat capacity changes on the scale of those inferred in other protein-DNA systems. However, the three operator sites are affected differentially by temperature: the intrinsic binding free energies for sites OR1 and OR3 change in parallel over the entire range, delta H0OR1 = -23.3 +/- 4.0 kcal mol-1 and delta H0OR3 = -22.7 +/- 1.2 kcal mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
15.
Phage lambda Integrase (Int) is the prototype of the so-called integrase family of conservative site-specific recombinases, which includes Cre and FLP. The natural function of Int is to execute integration and excision of the phage into and out of the Escherichia coli genome, respectively. In contrast to Cre and FLP, however, wild-type Int requires accessory proteins and DNA supercoiling of target sites to catalyze recombination. Here, we show that two mutant Int proteins, Int-h (E174 K) and its derivative Int-h/218 (E174 K/E218 K), which do not require accessory factors, are proficient to perform intramolecular integrative and excisive recombination in co-transfection assays inside human cells. Intramolecular integrative recombination is also detectable by Southern analysis in human reporter cell lines harboring target sites attB and attP as stable genomic sequences. Recombination by wild-type Int, however, is not detectable by this method. The latter result implies that eukaryotic co-factors, which could functionally replace the prokaryotic ones normally required for wild-type Int, are most likely not present in human cells.  相似文献   

16.
Bacteriophage lambda integration and exicision occur by reciprocal recombination within a 15-base homologous core region present in the recombining attachment (att) sites. Strand exchange within the core occurs at precise nucleotide positions, which define an overlap region in which the products of recombination contain DNA strands derived from different parents. In order to define the role of sequence homology during recombination we have constructed point mutations within the core and assayed their effects in vivo and in vitro on site-specific recombination. Two of the mutations are located at position ?3 of the core, which is one base-pair outside of the overlap region where strand exchange occurs. These mutations do not affect integrative or excisive recombination, thereby suggesting that homology outside the overlap region is not required for recombination. Two other mutations are located at position ?2 of the core, which is one base-pair within the overlap region. These mutations show severely depressed integrative and excisive recombination activities in vitro and in vivo when recombined against wild-type att sites. However, the ?2 mutations show normal recombination activity when recombined against att sites containing the homologous mutation, thereby suggesting that homology-dependent DNA interactions are required within the overlap region for effective recombination. In vitro recombination between homoduplex attP sites and heteroduplex attB sites demonstrated that the DNA interactions require only one strand of the attB overlap region to be homologous to attP in order to promote recombination.  相似文献   

17.
Phage lambda controls its integration and excision by differential catalysis of the forward and reverse reactions. The lambda Int protein is required for both directions, but Xis for excision only. To investigate the substrate requirements for directional control, we have characterized two mutations of the phage attachment site that are defective in integrative but not excisive recombination. Both of these mutations produce the same base change in the P'3 binding site for Int protein 79 base-pairs from the center of the crossover region for site-specific recombination. We infer that differential utilization of this distant binding site is crucial for directional control of recombination.  相似文献   

18.
Negatively supertwisted closed circular DNA is the primary substrate for integrative recombination of phage λ DNA in vitro. Closed circular λ DNA without supertwists must be converted to the supertwisted form by the action of Escherichia coli DNA gyrase before efficient recombination can occur. When negatively supertwisted substrate is provided, E. coli DNA gyrase and its cofactors are dispensable components of recombination reaction mixtures. In the absence of DNA gyrase activity, circular DNA considerably less negatively twisted than naturally occurring supercoils is an effective substrate, but positively supertwisted DNA appears to be an ineffective substrate.The predominant products of integrative recombination in vitro are covalently closed circles. The closure of the recombined sites appears to occur without appreciable DNA synthesis and without the action of E. coli DNA ligase. No detectable difference can be observed between the degree of supertwisting of product DNA and that of unrecombined DNA. These facts suggest that the resealing of broken DNA strands is an integral part of the recombination reaction mechanism and is closely coupled with the breakage and realignment steps of recombination.  相似文献   

19.
20.
A wide variety of tools have been used to dissect biochemical pathways, inhibitors being chief among them. Combinatorial approaches have made the search for inhibitors much more efficient. We have applied such an approach to identify hexapeptides which inhibit different steps in a site-specific recombination reaction mediated by the bacteriophage lambda integrase protein. Integrase's mechanism is still incompletely understood, in large part because several pathway intermediates remain hard to isolate. Integrase-catalyzed recombination is very efficient, but if blocked, it is highly reversible to substrates; this combination makes some intermediates exceedingly transient. We have used synthetic peptide combinatorial libraries to screen for hexapeptides that affect the recombination pathway at different stages, and have identified two families of peptides: one probably blocks DNA cleavage, the other may stabilize the Holliday junction intermediates. These peptides do not resemble parts of integrase or any of the other helper functions in the pathway. The deconvolution of hexapeptide libraries based both on inhibition of an enzymatic reaction as well as on accumulation of reaction intermediates is a novel approach to finding useful tools for dissecting a biochemical pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号