首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Activation-induced deaminase (AID) is required for both immunoglobulin class switch recombination and somatic hypermutation. AID is known to deaminate cytidines in single-stranded DNA, but the relationship of this step to the class switch or somatic hypermutation processes is not entirely clear. We have studied the activity of a recombinant form of the mouse AID protein that was purified from a baculovirus expression system. We find that the length of the single-stranded DNA target is critical to the action of AID at the Cs positioned anywhere along the length of the DNA. The DNA sequence surrounding a given C influences AID deamination efficiency. AID preferentially deaminates Cs in the WRC motif, and additionally has a small but consistent preference for purine at the position after the WRC, thereby favoring WRCr (the lowercase r corresponds to the smaller impact on activity).  相似文献   

3.
4.
5.
6.
7.
8.
9.
Somatic hypermutation and class switch recombination are initiated by the enzyme activation-induced cytidine deaminase (AID). Although other models exist for AID function, one model suggests that AID initiates these processes by deaminating cytidines within DNA, thereby initiating mutagenic repair pathways that involve either UNG or Msh2. Recent work shows that GST-hAID prefers to mutate WRC motifs, a motif frequently mutated in vivo. Because this is a strong argument in favor of the DNA deamination model, we sought to extend this analysis by examining the activity of purified AID with a small polyhistidine tag (His-hAID) on all 16 trinucleotide combinations (i.e., NNC). Here we show that purified His-hAID preferentially mutated cytidines within WRC (i.e., A/T, A/G, C) motifs, but poorly mutated cytidines within GYC (G, C/T, C) motifs. We next compared this mutability preference with those in hypermutating Ramos cells and in msh2–/–ung–/– mice, since both are reduced or deficient in UNG- and/or Msh2-induced mutations and are thus likely to reflect the sequence specificity of the mutator in vivo. Indeed, the mutation spectrums of purified His-hAID and GST-hAID matched the trinucleotide mutability indexes in Ramos cells and in msh2–/–ung–/– mice. Thus, the activity of AID on single-stranded DNA produces the same mutation pattern as double-stranded DNA in hypermutating cells. These data lend support to the DNA deamination model and indicate that AID does not require co-factors for its WRC specificity.  相似文献   

10.
11.
12.
Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3974-3984
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein that is composed of subunits of 70, 32, and 14 kDa. RPA is required for multiple processes in cellular DNA metabolism. RPA has been reported to (1) bind with high affinity to single-stranded DNA (ssDNA), (2) bind specifically to certain double-stranded DNA (dsDNA) sequences, and (3) have DNA helix-destabilizing ("unwinding") activity. We have characterized both dsDNA binding and helix destabilization. The affinity of RPA for dsDNA was lower than that of ssDNA and precisely correlated with the melting temperature of the DNA fragment. The rates of helix destabilization and dsDNA binding were similar, and both were slow relative to the rate of binding ssDNA. We have previously mapped the regions required for ssDNA binding [Walther et al. (1999) Biochemistry 38, 3963-3973]. Here, we show that both helix-destabilization and dsDNA-binding activities map to the central DNA-binding domain of the 70-kDa subunit and that other domains of RPA are needed for optimal activity. We conclude that all types of RPA binding are manifestations of RPA ssDNA-binding activity and that dsDNA binding occurs when RPA destabilizes a region of dsDNA and binds to the resulting ssDNA. The 70-kDa subunit of all RPA homologues contains a highly conserved putative (C-X2-C-X13-C-X2-C) zinc finger. This motif directly interacts with DNA and contributes to dsDNA-binding/unwinding activity. Evidence is presented that a metal ion is required for the function of the zinc-finger motif.  相似文献   

13.
Nucleic acid cytidine deaminases of the activation-induced deaminase (AID)/APOBEC family are critical players in active and innate immune responses, playing roles as target-directed, purposeful mutators. AID specifically deaminates the host immunoglobulin (Ig) locus to evolve antibody specificity, whereas its close relative, APOBEC3G (A3G), lethally mutates the genomes of retroviral pathogens such as HIV. Understanding the basis for the target-specific action of these enzymes is essential, as mistargeting poses significant risks, potentially promoting oncogenesis (AID) or fostering drug resistance (A3G). AID prefers to deaminate cytosine in WRC (W = A/T, R = A/G) motifs, whereas A3G favors deamination of CCC motifs. This specificity is largely dictated by a single, divergent protein loop in the enzyme family that recognizes the DNA sequence. Through grafting of this substrate-recognition loop, we have created enzyme variants of A3G and AID with altered local targeting to directly evaluate the role of sequence specificity on immune function. We find that grafted loops placed in the A3G scaffold all produced efficient restriction of HIV but that foreign loops in the AID scaffold compromised hypermutation and class switch recombination. Local targeting, therefore, appears alterable for innate defense against retroviruses by A3G but important for adaptive antibody maturation catalyzed by AID. Notably, AID targeting within the Ig locus is proportionally correlated to its in vitro ability to target WRC sequences rather than non-WRC sequences. Although other mechanisms may also contribute, our results suggest that local sequence targeting by AID/APOBEC3 enzymes represents an elegant example of co-evolution of enzyme specificity with its target DNA sequence.  相似文献   

14.
15.
16.
17.
Lough J  Jackson M  Morris R  Moyer R 《Mutation research》2001,478(1-2):191-197
E. coli single-stranded binding protein (SSB) has been examined for its ability to modulate bisulfite-induced cytosine deamination rates in single-stranded DNA (ssDNA). We used a lacZ alpha-complementation reversion assay to detect C-->U rates at a single codon in M13mp2 DNA, whether in free ssDNA or in an SSB:ssDNA complex. When incubated at 37 degrees C, the average bisulfite-induced reversion rate constant was four-fold less in SSB:ssDNA complexes than in ssDNA, at a single codon. Across a 250 base pair target and over 23 scorable C-->U sites, the forward rate constant was 4.9-fold less in SSB:ssDNA complexes than in ssDNA alone. After treatment with N-uracil glycosylase, ssDNA incubated with bisulfite had reversion frequencies at the background rate of ssDNA incubated without bisulfite, indicating that virtually all mutations scored were due to C-->U events. The decrease in cytosine deamination rates occurred both in a single codon and over a 250 bp target, indicating that interactions between SSB and ssDNA reduce bisulfite-catalyzed mutations. The structural role of SSB is well recognized in multiple cellular processes; SSB can also function to minimize bisulfite-induced ssDNA mutations.  相似文献   

18.
Bacterial conjugation, transfer of a single strand of a conjugative plasmid between bacteria, requires sequence-specific single-stranded DNA endonucleases called relaxases or nickases. Relaxases contain an HUH (His-hydrophobe-His) motif, part of a three-His cluster that binds a divalent cation required for the cleavage reaction. Crystal structures of the F plasmid TraI relaxase domain, with and without bound single-stranded DNA, revealed an extensive network of interactions involving HUH and other residues. Here we study the roles of these residues in TraI function. Whereas substitutions for the three His residues alter metal-binding properties of the protein, the same substitution at each position elicits different effects, indicating that the residues contribute asymmetrically to metal binding. Substitutions for a conserved Asp that interacts with one HUH His demonstrate that the Asp modulates metal affinity despite its distance from the metal. The bound metal enhances binding of ssDNA to the protein, consistent with a role for the metal in positioning the scissile phosphate for cleavage. Most substitutions tested caused significantly reduced in vitro cleavage activities and in vivo transfer efficiencies. In summary, the results suggest that the metal-binding His cluster in TraI is a finely tuned structure that achieves a sufficient affinity for metal while avoiding the unfavorable electrostatics that would result from placing an acidic residue near the scissile phosphate of the bound ssDNA.  相似文献   

19.
APOBEC3G (Apo3G) is a single-stranded (ss)DNA cytosine deaminase that eliminates HIV-1 infectivity by converting C → U in numerous small target motifs on the minus viral cDNA. Apo3G deaminates linear ssDNA in vitro with pronounced spatial asymmetry favoring the 3′ → 5′ direction. A similar polarity observed in vivo is believed responsible for initiating localized C → T mutational gradients that inactivate the virus. When compared with double-stranded (ds)DNA scanning enzymes, e.g. DNA glycosylases that excise rare aberrant bases, there is a paucity of mechanistic studies on ssDNA scanning enzymes. Here, we investigate ssDNA scanning and motif-targeting mechanisms for Apo3G using single molecule Förster resonance energy transfer. We address the specific issue of deamination asymmetry within the general context of ssDNA scanning mechanisms and show that Apo3G scanning trajectories, ssDNA contraction, and deamination efficiencies depend on motif sequence, location, and ionic strength. Notably, we observe the presence of bidirectional quasi-localized scanning of Apo3G occurring proximal to a 5′ hot motif, a motif-dependent DNA contraction greatest for 5′ hot > 3′ hot > 5′ cold motifs, and diminished mobility at low salt. We discuss the single molecule Förster resonance energy transfer data in terms of a model in which deamination polarity occurs as a consequence of Apo3G binding to ssDNA in two orientations, one that is catalytically favorable, with the other disfavorable.  相似文献   

20.
E E Biswas  S B Biswas 《Biochemistry》1999,38(34):10929-10939
We have analyzed the mechanism of single-stranded DNA (ssDNA) binding mediated by the C-terminal domain gamma of the DnaB helicase of Escherichia coli. Sequence analysis of this domain indicated a specific basic region, "RSRARR", and a leucine zipper motif that are likely involved in ssDNA binding. We have carried out deletion as well as in vitro mutagenesis of specific amino acid residues in this region in order to determine their function(s) in DNA binding. The functions of the RSRARR domain in DNA binding were analyzed by site-directed mutagenesis. DnaBMut1, with mutations R(328)A and R(329)A, had a significant decrease in the DNA dependence of ATPase activity and lost its DNA helicase activity completely, indicating the important roles of these residues in DNA binding and helicase activities. DnaBMut2, with mutations R(324)A and R(326)A, had significantly attenuated DNA binding as well as DNA-dependent ATPase and DNA helicase activities, indicating that these residues also play a role in DNA binding and helicase activities. The role(s) of the leucine zipper dimerization motif was (were) determined by deletion analysis. The DnaB Delta 1 mutant with a 55 amino acid C-terminal deletion, which left the leucine zipper and basic DNA binding regions intact, retained DNA binding as well as DNA helicase activities. However, the DnaB Delta 2 mutant with a 113 amino acid C-terminal deletion that included the leucine zipper dimerization motif, but not the RSRARR sequence, lost DNA binding, DNA helicase activities, and hexamer formation. The major findings of this study are (i) the leucine zipper dimerization domain, I(361)-L(389), is absolutely required for (a) dimerization and (b) ssDNA binding; (ii) the base-rich RSRARR sequence is required for DNA binding; (iii) three regions of domain gamma (gamma I, gamma II, and gamma III) differentially regulate the ATPase activity; (iv) there are likely three ssDNA binding sites per hexamer; and (v) a working model of DNA unwinding by the DnaB hexamer is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号