首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ion transport in the intestine of Gobius niger, a euryhaline teleost, was studied in both isotonic and hypotonic conditions. Isolated tissues, mounted in Ussing chambers and bilaterally perfused with isotonic Ringer solution, developed a serosa negative transepithelial voltage and a short circuit current indicating a net negative current in absorptive direction. Bilateral removal of Cl- and Na+ from the bathing solutions as well as the luminal removal of K+in the presence of Ba2+(10(-3) M) almost abolished both Vt and Isc. Similar results were obtained by adding bumetanide (10(-5)M) to the luminal bath while other inhibitors of Cl- transport mechanisms were ineffective. These observations suggest that salt absorption begins with a coupled entry of Na+, Cl-, and K+ across the apical membrane; a Ba2+inhibitable K+ conductance, demonstrated also by micropuncture experiments, recycles the ion into the lumen. Salt entry into the cell is driven by the operation of the basolateral Na+/K(+)-ATPase since serosal ouabain (10(-4)M) completely abolished both Vt and Isc; this pump also completes the Na(+) absorption. The inhibitory effect of both serosal bumetanide (10(-4)M) and SITS (5 x 10(-4)M) suggests that Cl- would leave the cell via the KCl cotransport, the Cl/HCO3- antiport and/or conductive pathways. Bilateral exposure of tissues to hypotonic media produced a reduction of both the transepithelial voltage and the short circuit current probably due to the activation of homeostatic ionic fluxes involved in cell volume regulation. The results of experiments with both isolated enterocytes and intestine exposed to hypotonic solution suggested that the recovery of cell volume, after the initial cell swelling, involves a parallel opening of K+ and Cl- channels to facilitate net solute and water effluxes from the cell. J. Exp. Zool. 301A:49-62, 2004.  相似文献   

2.
3.
The rumen epithelium of sheep and goats showed an increase in short circuit current ( Isc) and transepithelial conductance (gt) upon mucosal removal of divalent cations. A divalent-sensitive Isc and gt were present in Na+, K+ or Rb+ buffer, but nearly abolished in mucosal NMDG+ (N-methyl-D-glucamine) buffer. High K buffer, addition of BaCl2 or of ouabain on the serosal side also reduced or abolished the divalent-sensitive Isc. Mucosal Ca2+ was more potent in blocking Isc, but had the same potency as Mg2+ in blocking gt. A prolonged mucosal deprivation of Mg2+ ions increased gt, potential difference and basal as well as the Ca2+-sensitive Isc. Mucosal addition of Mg2+ had a smaller effect on gt after serosal preincubation with Ba. The data suggest that rumen epithelial cells exhibit an apical non-selective cation conductance, which permits the passage of monovalents in the mucosal absence of divalents. The development of a divalent-sensitive Isc in Na buffer requires Na+/K+ pumps and K+ recycling through Ba2+-sensitive K+ conductances on the basolateral side. This Isc is blocked by extracellular Ca2+ and both extracellular and intracellular Mg2+ ions. A prolonged deprivation of mucosal Mg2+ alone seems to affect intracellular Mg2+ in this Mg2+-absorbing tissue.  相似文献   

4.
Dispersed isolated cells were obtained from human tracheal mucosa by digestion with collagenase. Up to 1.5 X 10(8) cells were obtained per trachea and showed up to 95% viability, as judged by trypan blue exclusion. When grown in culture, the cells formed monolayers after approximately 4 days. Electron microscopy of the monolayers revealed a polarized structure. An apical membrane, containing microvilli and a pronounced glycocalyx, was separated from a relatively unspecialized basolateral membrane by typical tight junctions. Monolayers grown on nucleopore filters showed resistances of 44-1,800 omega. cm2 and transepithelial potential differences of 0.1-7.6 mV. Short-circuit current (Isc) was increased by isoproterenol, prostaglandins E2 and F2 alpha, and bradykinin. The loop diuretic, bumetanide, reduced Isc when added to the basolateral (serosal) side but had no effect from the apical (mucosal) side of the monolayers. Furosemide and MK-196 also inhibited Isc. Mucosal amiloride inhibited Isc. Serosal amiloride or mucosal ouabain had no effect on Isc. Serosal ouabain brought Isc to zero after approximately 15 min.  相似文献   

5.
6.
We have described a coupled Na--Cl entry step at the apical membrane of a tight epithelium, the rabbit urinary bladder. Mucosal pH values, more acid than 4.6, stimulate a 20 to 40-fold increase in mucosal-to-serosal Na+ and Cl- flux. The flux increase is almost completely blocked by low concentrations of of bumetanide. The transepithelial movement of Na+ and Cl- is normally electroneutral; however, when weak acids (such as acetate) are present in the mucosal solution, the acid-induced increase in flux is accompanied by a large increase in short-circuit current. Besides blockage by bumetanide, both the increase in flux and short-circuit current are blocked by: (1) Na+-free solutions on the mucosa; (2) Cl--free solutions on the mucosa; (3) phosphodiesterase inhibitors; (4) ouabain in the serosal solution; (5) K+-free solutions on the serosa; and (6) HCO3--free solutions on the serosa. The increase in the fluxes and the short-circuit current is unaffected by: (1) amiloride application in the mucosal solution; (2) mucosally applied stilbene derivatives which block Cl-/HCO3- exchange (SITS); and (3) Cl--free solutions applied to the serosa. We interpret these results to imply a coupled Na--Cl uptake step at the apical membrane which is stimulated by intracellular acetate (or (pH). The uptake step leads to a movement of Na+ and Cl- across the basolateral membrane, which is mediated by the Na+, K+-ATPase and a Na/Cl/HCO3- exchange mechanism. Our results demonstrate that "tight" epithelia may, under appropriate circumstances, demonstrate mechanisms of ion movement which are similar to "leaky" epithelia.  相似文献   

7.
1. Prairie dog gallbladders mounted in a Ussing-type chamber and bathed with symmetrical Ringer's solutions exhibited a transepithelial resistance (Rt) of 51 +/- 5 omega cm2, a lumen negative potential difference (Vms) of 11.5 +/- 0.7 mV and a short-circuit current (Isc) of 6.9 +/- 0.3 microEq/hr/cm2. 2. Radioisotopic ion flux experiments revealed that the basal Isc of 6.9 +/- 0.3 microEq/hr/cm2 was mostly accounted for by net Na+ absorption of 3.2 +/- 0.5 microEq/hr/cm2 and net Cl- secretion of 2.9 +/- 0.3 microEq/hr/cm2. 3. In HCO3- free Ringer's, net Na+ flux was virtually abolished, net Cl- flux decreased by 50% and Isc was reduced by 77%. 4. 10(-3) M mucosal amiloride and DIDS reduced Isc by 28 and 24%, respectively. 5. Mucosal NaCl diffusion potentials indicated that the paracellular pathway was cation selective. 6. Thin section electron micrographs showed a single cell population in this epithelium suggesting that net Na+ absorption and Cl- secretion may emerge from the same cells. 7. We conclude that prairie dog gallbladder epithelium is an electrogenic tissue and, in contrast to gallbladders of most other species, simultaneously but independently absorbs Na+ and secretes Cl-.  相似文献   

8.
Pentachlorophenol (PCP) is a toxic substance that affects many tissues adversely. Present experiments, using an in vitro preparation, were designed to study whether PCP affected the electrophysiological parameters of the bullfrog cornea epithelium, specifically, the Na+/K+ ATPase pump and the K+ conductance located in the basolateral membrane and the Cl- conductance located in the apical membrane. For this purpose, corneas were impaled with microelectrodes and experiments were done under short-circuit current (Isc) conditions. Addition of PCP to a concentration of 5 x 10-5 M to the tear solution gave a marked decrease in Isc; a marked depolarization of the intracellular potential, Vo; and minimal but significant decreases in the apical membrane fractional resistance, fRo, and in the transepithelial conductance, gt. Isc experiments in Cl--free solutions with amphotericin B in the tear solution confirm results indicating that PCP inhibits the active transepithelial transport mechanism and produces a small increase in the basolateral membrane resistance due to a decrease in the K+ conductance.  相似文献   

9.
22Na+ and 42K+ fluxes across the basolateral membrane of the isolated epithelium of frog skin were investigated with regard to dependence on K+ in the basolateral solution. When K+ was removed from the basolateral solution (K+-free Ringer), there was a transient rise in short circuit current (Isc) that could be eliminated by pretreatment with ouabain. Concurrently, the apparent sodium efflux across the basolateral membrane (JNa*13) showed either no change or an immediate (1-2 min) small decrease (approximately equal to 10%) that was followed by a small transient increase. K+ fluxes showed either no change or a small decrease under these conditions. JNa*13 was partially ouabain sensitive during all of the above treatments. Furosemide partially inhibited both sodium and potassium flux after K+-free treatment. The pump, as defined by ouabain sensitivity of Na+ flux, continued to work even after 20 minutes of K+-free treatment. Pump activity may be maintained by potassium leaking from the cells that is recycled by the pump. However, the ouabain-sensitive transient rise in Isc after K+-free treatment cannot readily be explained by changes in either Na+ or K+ flux. A change in pump coupling ratio provides one explanation for these data.  相似文献   

10.
We studied the effect of tetracyclines on the Na+/K+ pump activity in Calu-3, a human airway cell line. To estimate Na+/K+ pump capacity on the basolateral membrane, an ouabain-sensitive component of the short-circuit current (Isc) was measured in the presence of nystatin, an ionophore of Na+. The application of ouabain (1 mM) to the basolateral solution completely inhibited the Isc generated by adding nystatin (50 microM) to the apical solution. Tetracycline (TC), minocycline (MC), or demethylchlortetracycline (DC) at 0.5 mM applied to the apical but not to the basolateral solution also decreased the nystatin-induced Isc. Neither phlorizin- nor diphenylamine-2-carboxylic acid-sensitive Isc was affected by TC, MC, or DC. These results indicate that tetracyclines may permeate only through the apical membrane with the result that the Na+/K+ pump's capacity for Na+ extrusion should be suppressed without a decrease in Cl- transport.  相似文献   

11.
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.  相似文献   

12.
Chloride secretion (Isc) by the opercular epithelium of the teleost, Fundulus heteroclitus, is stimulated by elevations in intracellular cyclic AMP (cAMP) elicited by beta-adrenergic agonists, such as isoproterenol, and is accompanied by a small but significant increase in the transepithelial conductance (Gt). Cupric ions (Cu2+) have been shown to block the apical membrane Cl- channels in this epithelium, leading to a reduction in both the Isc and Gt (Degnan, '85). In the present studies, the effects of Cu2+ on cAMP-elevated and cAMP-depleted epithelia were observed to define the actions of cAMP in this stimulatory process. At a concentration of 5 X 10(-4) M in the mucosal solution, Cu2+ inhibited the Isc 79.8% and reduced the Gt 39.2%. Isoproterenol produced an attenuated stimulation of the Isc in these tissues compared to untreated controls, but had no effect on the Gt. In tissues bathed bilaterally with Cl- -free Ringer, the Isc was virtually abolished and the Gt was reduced 37.0%; neither Cu2+ nor isoproterenol had any effects on the Isc or Gt under this condition. Simultaneous 2 2Na and 3 6 Cl unidirectional flux determinations indicated that the only effects of both isoproterenol and Cu2+ were on the active Cl- secretory flux. An inhibitor of adenylate cyclase, 2',5' dideoxyadenosine (DDA), reduced the Isc and Gt 39.8% and 20.8% respectively. This inhibitor had no additional effects in Cu2+ -treated tissues and the action of Cu2+ on the Gt was reduced in DDA-treated tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
1. Net potassium secretion (JKnet) by the sodium-depleted hen's colon (low sodium colon) is 0.17 +/- 0.07 mumol/cm2.hr. Amiloride or ouabain eliminates short circuit currents (Isc) of 16-20 mumol/cm2.hr without affecting JKsm. 2. In the NaCl-loaded hen's colon (high sodium colon) stimulating Isc by (a) glucose, (b) amino acids, and inhibiting with (c) ouabain changes JKnet from 0.08 +/- 0.04 to (a) 0.42 +/- 0.07, to (b) 0.60 +/- 0.07 to (c) 0.13 +/- 0.13 mumol/cm2.hr. 3. In both colonic types theophylline increases and bumetanide decreases JKnet by 1 mumol/cm2.hr. 4. Conclusion: Apical membranes of sodium-absorbing and chloride-secreting cells of the high sodium colon are potassium permeable. In the low sodium colon sodium-absorbing cells have potassium-impermeable apical membranes.  相似文献   

15.
Palytoxin stimulated a cation-dependent short-circuit current (Isc) in rat distal and proximal colon in a concentration-dependent fashion when applied to the mucosal surface of the tissue. The distal colon exhibited a higher sensitivity to the toxin. The palytoxin-induced Isc was blocked by vanadate but was resistant to ouabain or scilliroside, suggesting the conversion of a vanadate-sensitive H+/K+-ATPase into an electrogenic cation transporter. Cation substitution experiments with basolaterally depolarized tissues suggested an apparent permeability of the palytoxin-induced conductance of Na+>K+>Li+. Immunohistochemical control experiments confirmed the absence of the Na+/K+-ATPase in the apical membrane. Consequently, the pore-forming action of palytoxin is not restricted to Na+/K+-ATPase but is also observed with the colonic H+/K+-ATPase.  相似文献   

16.
Addition of 10(-5) M amphotericin B to the tear solution of an in vitro preparation of the frog cornea increased the transepithelial conductance, gt, and decreased the apical membrane fractional resistance, f(R0), in the presence or absence of tear Na+ and Cl-. In the presence of tear Na+ and Cl-, amphotericin B increased the short-circuit current, Isc, from 3.9 to 8.8 microA.cm-2 and changed the intracellular potential, V0, from -48.5 to -17.9 mV probably due to a higher increase in the Na+ than in the K+ conductance. In the absence of tear Na+ and Cl-, amphotericin B decreased Isc from 5.5 to about 0 microA.cm-2 due to K+ (and possibly Na+) flux from cell to tear and changed V0 from -35.4 to -63.6 mV due to the increase in conductance of both ions. Increase in the tear K+ from 4 to 79 mM (in exchange for choline), in the presence of amphotericin B and absence of tear Na+ and Cl-, decreased f(R0) from 0.09 to 0.06, increased gt from 0.23 to 0.31 mS, increased Isc from 0.63 to 7.3 microA.cm-2, and changed V0 from -65.5 to -17.3 mV due to the change in EK in the presence of a high conductance in the tear membrane. Similar effects were observed with an increase of tear Na+. Results support the concept that the Na+ conductance opened by amphotericin B in the apical membrane is greater than the K+ conductance. Previously observed transepithelial effects of the ionophore may be explained mostly on the basis of its effect on the apical membrane.  相似文献   

17.
In this study we have characterized the bumetanide-sensitive K+/Na+/Cl- cotransport in cultured rat cardiac myocytes. 1) It carries about 10% of the total K+ influx. 2) It is sensitive to furosemide (Ki0.5 = 10(-6)M) and bumetanide (Ki0.5 = 10(-7)M). 3) It is strongly dependent on the extracellular concentrations of Na+ and Cl-. 4) It carries out influx of both ions, K+ and Na+. A therapeutic concentration of ouabain (10(-7) M) stimulated the bumetanide-sensitive K+ influx (as measured by 86Rb+), in the cultured myocytes, with no effect on the bumetanide-resistant K+ influx, which was mediated mostly by the Na+/K+ pump. Stimulation of the bumetanide-sensitive Rb+ influx by a low ouabain concentration was strongly dependent on Na+ and Cl- in the extracellular medium. A low concentration of ouabain (10(-7) M) was found to increase the steady-state level of cytosolic Na+ by 15%. This increase was abolished by the addition of bumetanide or furosemide. These findings suggest that ouabain, at a low (10(-7) M) concentration, induced its positive inotropic effect in rat cardiac myocytes by increasing Na+ influx into the cells through the bumetanide-sensitive Na+/K+/Cl- cotransporter. In order to examine this hypothesis, we measured the effect of bumetanide on the increased amplitude of systolic cell motion induced by ouabain. Bumetanide or furosemide, added to cultured cardiac myocytes, inhibited the increased amplitude of systolic cell motion induced by ouabain. Neither bumetanide nor furosemide alone has any significant effect on the basal amplitude of systolic cell motion. We propose that stimulation of bumetanide-sensitive Na+ influx plays an essential role in the positive inotropic effect in rat cardiac myocytes induced by low concentration of ouabain.  相似文献   

18.
The contributions of Na+/K+-ATPase, K+ channels, and the NaK2Cl cotransporter (NKCC) to total and unidirectional K+ flux were determined in mammalian skeletal muscle at rest. Rat hindlimbs were perfused in situ via the femoral artery with a bovine erythrocyte perfusion medium that contained either 86Rb or 42K, or both simultaneously, to determine differences in ability to trace unidirectional K+ flux in the absence and presence of K+-flux inhibitors. In most experiments, the unidirectional flux of K+ into skeletal muscle (J(in)K) measured using 86Rb was 8-10% lower than J(in)K measured using 42K. Ouabain (5 mM) was used to inhibit Na+/K+-ATPase activity, 0.06 mM bumetanide to inhibit NKCC activity, 1 mM tetracaine or 0.5 mM barium to block K+ channels, and 0.05 mM glybenclamide (GLY) to block ATP-sensitive K+ (K(ATP)) channels. In controls, J(in)K remained unchanged at 0.31 +/- 0.03 micromol x g(-1) x min(-1) during 55 min of perfusion. The ouabain-sensitive Na+/K+-ATPase contributed to 50 +/- 2% of basal J(in)K, K+ channels to 47 +/- 2%, and the NKCC to 12 +/- 1%. GLY had minimal effect on J(in)K, and both GLY and barium inhibited unidirectional efflux of K+ (J(out)K) from the cell through K+ channels. Combined ouabain and tetracaine reduced J(in)K by 55 +/- 2%, while the combination of ouabain, tetracaine, and bumetanide reduced J(in)K by 67 +/- 2%, suggesting that other K+-flux pathways may be recruited because the combined drug effects on inhibiting J(in)K were not additive. The main conclusions are that the NKCC accounted for about 12% of J(in)K, and that K(ATP) channels accounted for nearly all of the J(out)K, in resting skeletal muscle in situ.  相似文献   

19.
The immortalized rat submandibular epithelial cell line, SMG-C6, cultured on porous tissue culture supports, forms polarized, tight-junction epithelia facilitating bioelectric characterization in Ussing chambers. The SMG-C6 epithelia generated transepithelial resistances of 956+/-84Omega.cm2 and potential differences (PD) of -16.9 +/- 1.5mV (apical surface negative) with a basal short-circuit current (Isc) of 23.9 +/- 1.7 microA/cm2 (n = 69). P2 nucleotide receptor agonists, ATP or UTP, applied apically or basolaterally induced a transient increase in Isc, followed by a sustained decreased below baseline value. The peak DeltaIsc increase was partly sensitive to Cl- and K+ channel inhibitors, DPC, glibenclamide, and tetraethylammonium (TEA) and was completely abolished following Ca2+ chelation with BAPTA or bilateral substitution of gluconate for Cl-. The major component of basal Isc was sensitive to apical Na+ replacement or amiloride (half-maximal inhibitory concentration 392 nM). Following pretreatment with amiloride, ATP induced a significantly greater Isc; however, the poststimulatory decline was abolished, suggesting an ATP-induced inhibition of amiloride-sensitive Na+ transport. Consistent with the ion transport properties found in Ussing chambers, SMG-C6 cells express the rat epithelial Na+ channel alpha-subunit (alpha-rENaC). Thus, cultured SMG-C6 cells produce tight polarized epithelia on permeable support with stimulated Cl- secretory conductance and an inward Isc accounted for by amiloride-sensitive Na+ absorption.  相似文献   

20.
Electrophysiological studies on renal thick ascending limb segments indicate the involvement of a luminal Na+/K+/Cl- cotransport system and a K+ channel in transepithelial salt transport. Sodium reabsorption across this segment is blocked by the diuretics furosemide and bumetanide. The object of our study has been to identify in intact membranes and reconstitute into phospholipid vesicles the Na+/K+/Cl- cotransporter and K+ channel, as an essential first step towards purification of the proteins involved and characterization of their roles in the regulation of transepithelial salt transport. Measurements of 86Rb+ uptake into membrane vesicles against large opposing KCl gradients greatly magnify the ratio of specific compared to non-specific isotope flux pathways. Using this sensitive procedure, it has proved possible to demonstrate in crude microsomal vesicle preparations from rabbit renal outer medulla two 86Rb+ fluxes. (A) A furosemide-inhibited 86Rb+ flux in the absence of Na+ (K+-K+ exchange). This flux is stimulated by an inward Na+ gradient (Na+/K+ cotransport) and is inhibited also by bumetanide. (B) A Ba2+-inhibited 86Rb+ flux, through the K+ channel. Luminal membranes containing the Na+/K+/Cl- cotransporter and K+ channels, and basolateral membranes containing the Na+/K+ pumps were separated from the bulk of contaminant protein by metrizamide density gradient centrifugation. The Na+/K+/Cl- cotransporter and K+ channel were reconstituted in a functional state by solubilizing both luminal membranes and soybean phospholipid with octyl glucoside, and then removing detergent on a Sephadex column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号