首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The provirus of mouse mammary tumour virus (MMTV) is reputed to contain sequences within the viral gag gene that prevent or inhibit its propagation as a recombinant DNA clone in Escherichia coli. Here we report the successful isolation of several lambda and plasmid clones comprising the 5' virus-host DNA junction fragments from integrated MMTV proviruses in BR6 mice. Although the lambda clones appeared intact, almost all of the plasmids were found to contain the bacterial insertion sequences IS1 or IS2 within a small region of the gag gene. One nondisrupted clone was recovered which had undergone multiple G to A transitions, some of which created stop codons in gag. These results have provided more precise information as to the location of the poison sequences and are discussed in relation to possible explanations for the phenomenon.  相似文献   

2.
The glucocorticoid-regulatory sequences from the murine mammary tumor virus long terminal repeat (MMTV LTR) were introduced into the LTR of Moloney murine leukemia virus (M-MuLV) by recombinant DNA techniques. The site of insertion was in the M-MuLV LTR U3 region at -150 base pairs with respect to the RNA cap site. Infectious M-MuLVs carrying the altered LTRs (Mo + MMTV M-MuLVs) were recovered by transfection of proviral clones into NIH-3T3 cells. The Mo + MMTV M-MuLVs were hormonally responsive in that infection was 3 logs more efficient when performed in the presence of dexamethasone, irrespective of the orientation of the inserted MMTV sequences. However, even in the presence of hormone, the Mo + MMTV M-MuLVs were less infectious than wild-type M-MuLV. In contrast to the large effect on infectivity, dexamethasone induced virus-specific RNA levels in chronically Mo + MMTV M-MuLV-infected cells only two- to fourfold. Fusion plasmids between the altered LTRs and the bacterial chloramphenicol acetyltransferase gene allowed the investigation of LTR promoter strength by the transient chloramphenicol acetyltransferase expression assay. The chloramphenicol acetyltransferase assays indicated that the insertion of MMTV sequences into the M-MuLV LTR reduced promoter activity in the absence of glucocorticoids but that promoter activity could be induced two- to fivefold by dexamethasone. The Mo + MMTV M-MuLVs were also tested for the possibility that viral DNA synthesis or integration during initial infection was enhanced by dexamethasone. However, no significant difference was detected between cultures infected in the presence or absence of hormone. The insertion of MMTV sequences into an M-MuLV LTR deleted of its enhancer sequences did not yield infectious virus or active promoters, even in the presence of dexamethasone.  相似文献   

3.
4.
Restriction fragments of the mouse mammary tumor virus (MMTV) proviral DNA were obtained by molecular cloning procedures. A 4-kilobase fragment delimited by two PstI sites was isolated from unintegrated, linear MMTV DNA and amplified in the pBr322 plasmid vector. EcoRI fragments of proviral DNA, integrated into the genome of a GR mammary tumor cell line, were isolated as lambda recombinant molecules. Five different recombinant phages which contained the 3' region of the MMTV proviral DNA and adjacent host DNA sequences were isolated. Heteroduplex analysis and S1 nuclease digestion suggested that there is no extensive sequence homology in the host DNA flanking the different proviral genes. The cloned DNA was fractionated into site-specific restriction fragments which served as molecular probes in the analysis of the endogenous MMTV proviral copies of C3H, GR, BALB/c, and feral mice. This allowed the correlation of MMTV-specific EcoRI fragments obtained from genomic DNA of these strains with the 5' and 3' ends of the proviral gene. Restriction fragments of two clones which contained the proviral sequences adjacent to the flanking host DNA as well as 1 to 2 kilobases of host DNA were used as hybridization probes, and the results allow the following conclusions: the proviral DNA of both clones contains nucleotide sequences complementary to the 5' and 3' ends of proviral DNA; and the host DNA flanking one clone belongs to the unique class of genomic DNA, whereas the DNA flanking the second clone is reiterated at least 15 times within the mouse genome.  相似文献   

5.
6.
We have cloned circular unintegrated mouse mammary tumor virus (MMTV) DNA from infected rat hepatoma cells in bacteriophage lambda. Seven independent clones containing MMTV DNA of homogeneous length of 9 kb (five) or 10 kb (two) were identified. The five 9 kb clones had identical restriction maps consistent with that of 9 kb unintegrated DNA; the other two were aberrant. MMTV DNA inserts were purified, ligated and used for cotransfection of Ltk? cells together with a plasmid containing the thymidine kinase gene of herpes simplex virus. All Tk+ cell clones acquired new MMTV sequences and those transfected with the 9 kb MMTV DNA synthesized normal viral RNA and proteins. Viral gene expression was increased by the addition of dexamethasone.  相似文献   

7.
8.
Exogenous mouse mammary tumor virus (MMTV) was cloned from a GR mammary tumor. Clone lambda GRT39 contained a full-length integrated MMTV(GR) provirus and both 5' and 3' host flanking DNA. The lambda GRT39 provirus had no apparent structural changes associated with cloning and retained the exogenous MMTV gag gene poison sequence. When introduced into rat mammary adenocarcinoma LA7 cells, the lambda GRT39 provirus was fully expressed. lambda GRT39-transfected LA7 cells made MMTV RNA, had gp52 SU protein on the cell surface, and produced B-type retrovirus particles characteristic of MMTV. Mammary tumors developed in hormone-stimulated BALB/c females injected with MMTV from lambda GRT39-transfected LA7 cells [MMTV (lambda GRT39)]. The tumors had new, clonally integrated copies of the MMTV(lambda GRT39) provirus and were expressing MMTV antigen. These data indicate that the lambda GRT39 provirus is biologically active and pathogenic.  相似文献   

9.
10.
A retroviral insertional mutation, especially by mouse mammary tumor virus (MMTV), is a major cause of murine mammary tumorigenesis. Prompted by our previous finding that FGF8, an insertionally activated cellular oncogene, is highly expressed in androgen-dependent mouse mammary Shionogi carcinoma cells, we here investigated retroviral integration adjacent to the fgf8 locus in Shionogi carcinoma. In the genomic Southern blots for fgf8 and its 5'-upstream gene npm3, the hybridized fragments were identical to the host DD/Sio mice, the original Shionogi carcinoma 115 tumor, and a pair of cultured Shionogi carcinoma cell lines of SC-3 and SC-4, suggesting that no retroviral integration occurred around either loci. The genomic cloning for the fgf8 locus from SC-3 cells also confirmed no MMTV integration. In addition, npm3, which is usually coactivated with fgf8 by MMTV insertion,was not up-regulated by androgens in SC-3 cells. All these findings led us to conclude that no retroviral insertion was present at the common integration sites adjacent to the fgf8 locus in Shionogi carcinoma although we demonstrated in this study that multiple proviral sequences of MMTV, Moloney murine sarcoma virus and FBJ-murine sarcoma virus are integrated into SC-3 cells in association with their distinct promoter activity in SC-3 cells.  相似文献   

11.
12.
13.
The endogenous proviral copies of mouse mammary tumor virus (MMTV) were selected from a gene library of GR mouse DNA. We obtained five different lambda. MMTV recombinant clones. Four of them correspond to the 3' Eco RI fragments of the endogenous proviruses an one comprises an intact MMTV provirus with 2 to 3 kb of flanking mouse genomic DNA. Heteroduplex formation followed by S1 digestion under stringent conditions shows that there is nucleotide sequence heterology among the cloned endogenous proviral copies. Only one endogenous proviral copy, associated with the mtv-2 locus, was found to be totally homologous to the exogenous proviral DNA.  相似文献   

14.
15.
16.
17.
18.
Mouse mammary tumor virus (MMTV) has long been implicated in mouse mammary carcinogenesis, and it is now well established that the long terminal repeat (LTR) contains regulatory sequences responsible for glucocorticoid-mediated induction of viral RNA. However, we have demonstrated previously that androgens as well as glucocorticoids can regulate MMTV RNA in the S115 mouse mammary tumor cell line. To determine if androgens act directly on the LTR in these cells, plasmids were constructed with the MMTV LTR joined to the coding sequences of genes not normally expressed in the cells. Following transfection of these chimeric genes into S115 cells, we show that the expression of the genes is regulated by both androgens and glucocorticoids. Furthermore, hormonal regulation is also conferred by the LTR on the neighboring guanine phosphoribosyltransferase (gpt) gene. Thus, androgens can act on the LTR of MMTV when the appropriate receptors are present in the cells, and this interaction can influence the expression of additional adjacent genes.  相似文献   

19.
Type B leukemogenic virus (TBLV) is a variant of mouse mammary tumor virus (MMTV) that causes T-cell lymphomas in mice. We have constructed a TBLV-MMTV hybrid, pHYB-TBLV, in which 756 bp of the C3H MMTV long terminal repeat (LTR) was replaced with 438 bp of the TBLV LTR. Intraperitoneal injection of pHYB-TBLV transfectants consistently resulted in T-cell lymphomas in 50% of injected weanling BALB/c mice with an average latency period of 5.7 (+/- 1.5) months. Transfectants of pHYB-TBLV containing a double-frameshift mutation in the truncated superantigen gene (sag) induced T-cell lymphomas with similar incidences, latency periods, and phenotypes, suggesting that cis-acting elements in the TBLV LTR determine disease specificity.  相似文献   

20.
Reuss FU  Coffin JM 《Journal of virology》2000,74(17):8183-8187
Expression of mouse mammary tumor virus (MMTV)-encoded superantigens in B lymphocytes is required for viral transmission and pathogenesis. We have previously established a critical role of an enhancer element within the long terminal repeat (LTR) for MMTV sag gene expression in B-lymphoid progenitor cells. We now demonstrate enhancer activity of this element in a promyelocytic progenitor cell line. We also map the position of the enhancer within the U3 region of the MMTV LTR and show that the progenitor cell enhancer shares functional elements with a previously described mammary gland-specific enhancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号